DOI QR코드

DOI QR Code

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet

표면조도가 나노유체 액적의 접촉각에 미치는 영향

  • Kim, Yeung Chan (Dept. of Mechanical & Automotive Engineering, Andong Nat'l Univ.)
  • 김영찬 (안동대학교 기계자동차공학과)
  • Received : 2012.10.09
  • Accepted : 2013.04.09
  • Published : 2013.06.01

Abstract

The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

본 연구에서는 고체의 표면조도가 나노유체 액적의 접촉각에 미치는 영향에 대해 실험적 연구를 수행하였다. 나노유체는 산화구리(CuO) 나노분말을 순수 물과 혼합하여 제조하였으며, 고체는 한 변의 길이가 10 mm 정육면체 구리시편을 실험에 사용하였다. 나노유체 액적의 접촉각은 동일한 표면조도 조건에서 순수 물 액적의 접촉각 보다 다소 낮게 측정되었으며, 구리시편의 표면조도가 증가할수록 순수 물과 나노유체 액적의 접촉각은 모두 증가하고 있음을 실험결과로부터 알 수 있었다. 또한 가열-급냉(quench) 실험을 거친 구리시편 표면에서의 접촉각은 순수 표면에서의 접촉각보다 다소 낮게 측정되었으며, 이는 구리표면의 산화에 기인하는 것으로 판단된다. 그러나 가열-급냉 실험에 있어서 냉각 액체로서 순수 물과 나노유체를 사용한 경우의 액적 접촉각 측정결과들은 큰 차이가 없는 것으로 나타났으며, 이러한 실험결과로부터 냉각과정에 있어서 나노입자가 액적의 접촉각에 영향을 미칠 정도로 구리시편의 표면상태를 변화시키지 못하는 것으로 생각된다.

Keywords

References

  1. Anderson , T. M. and Mudawar, I., 1989, "Micro- Electronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid," ASME J. of Heat Transfer, Vol. 111, pp. 752-759. https://doi.org/10.1115/1.3250747
  2. Honda, H., Takamastu, H. and Wei, J. J., 2002, "Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness," ASME J. of Heat Transfer, Vol. 124, pp. 383-390. https://doi.org/10.1115/1.1447937
  3. Kim, Y. C., 2010, "Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region," Trans. Korean Soc. Mech. Eng. B, Vol. 34-11, pp. 983-990. https://doi.org/10.3795/KSME-B.2010.34.11.983
  4. Choi, U. S., 1995, "Enhancing Thermal Conductivity of Fluid with Nano-particles," ASME FED, Vol. 231, pp. 99-105.
  5. Xuan, Y. and Li, Q., 2003, "Investigation on Convective Heat Transfer and Flow Features of Nanofluids," ASME J. of Heat Tranasfer, Vol. 125, pp. 151-155. https://doi.org/10.1115/1.1532008
  6. Tio, Y. and Sadhal, S., 1992, "Thermal Analysis of Droplet Spray Evaporation from a Heated Solid Surface," ASME J. of Heat Tranasfer, Vol. 114, pp. 220-226. https://doi.org/10.1115/1.2911250
  7. Wenzel, R. N., 1936, "Resistance of Solid Surfaces to Wetting by Water," Industrial and Engineering Chemistry, Vol. 28-8, pp. 988-994. https://doi.org/10.1021/ie50320a024

Cited by

  1. Experimental Study of Evaporation of Nanofluid Droplet vol.37, pp.7, 2013, https://doi.org/10.3795/KSME-B.2013.37.7.647
  2. A Study on the Joint Property by the Surface Treatment Method on the Jointing Method of PET Film using the High Hardness Liquid vol.18, pp.3, 2014, https://doi.org/10.11112/jksmi.2014.18.3.153