DOI QR코드

DOI QR Code

Antioxidant Activity of Panax ginseng Flower-buds Fermented with Various Microorganisms

발효 미생물에 따른 인삼꽃의 항산화 활성

  • Kim, Kyoung-Hee (Dept. of Food and Nutrition, Chungnam National University) ;
  • Kim, Da-Mi (Dept. of Food and Nutrition, Chungnam National University) ;
  • Byun, Myung-Woo (Dept. of Culinary Nutrition, Woosong University) ;
  • Yun, Young-Sik (Dept. of Food and Nutrition, Chungnam National University) ;
  • Yook, Hong-Sun (Dept. of Food and Nutrition, Chungnam National University)
  • 김경희 (충남대학교 식품영양학과) ;
  • 김다미 (충남대학교 식품영양학과) ;
  • 변명우 (우송대학교 외식조리영양학부) ;
  • 윤영식 (충남대학교 식품영양학과) ;
  • 육홍선 (충남대학교 식품영양학과)
  • Received : 2013.01.10
  • Accepted : 2013.03.20
  • Published : 2013.05.31

Abstract

To improve the use of ginseng flower-buds, antioxidant activities of ginseng flower-buds fermented using a variety of useful microorganisms were analyzed. Non-fermented grape pomace was used as a control, while fermentation was carried out using Bacillus subtilis (BS), Lactobacillus plantarum (LP), Lactobacillus casei (LC), Candida utilis (CU), Saccharomyces cerevisiae strain CHY1011 (Y1), Saccharomyces cerevisiae strain ZP 541 (Y2), and a mixed-strain culture with LP, LC, and CU (M). The total polyphenol content of ginseng flower-buds was highest in the control compared to the other fermented ginseng flower-buds. DPPH radical and ABTS radical scavenging activity were also highest in fermented group by BS. The FRAP value (10 mg/mL) was highest in the control group but did not show a significant difference in the fermented group by BS. The highest reducing power activity was in the fermented group by LC compared to the other group, including the control. Therefore, the fermentation of ginseng flower-buds using various microorganisms, shows that fermentation with the Bacillus subtilis strain increases antioxidant activity. More research of its effects on other physiological activities will be needed.

인삼과 마찬가지로 많은 사포닌을 함유하고 있는 인삼꽃의 이용 가치를 증진시키기 위한 연구의 일환으로 Bacillus subtilis(BS), Lactobacillus plantarum(LP), Lactobacillus casei(LC), Candida utilis(CU), Saccharomyces cerevisiae strain CHY1011(Y1), Saccharomyces cerevisiae strain ZP 541(Y2), 혼합발효(M) 등의 여러 유용 미생물을 이용하여 인삼꽃을 발효시킨 후 미생물별 인삼꽃 발효물에 대한 항산화 활성 변화를 탐색하였다. 총 페놀함량 측정 결과 무발효 추출물은 인삼꽃 발효물에 비해 유의적(p<0.05)으로 높은 값을 보였으며, 발효 균주 중에서는 BS로 발효한 발효물이 가장 높은 값을 나타내었다. DPPH radical 소거활성 및 ABTS radical 소거활성 측정 결과 BS 발효물이 유의적으로 가장 높은 활성을 나타내었으나, FRAP value(10 mg/mL)는 무발효 추출물의 활성이 가장 높게 나왔으며 BS 발효물과는 유의차를 보이지 않았다. 환원력 측정 결과, 대체적으로 무발효 추출물에 비해 미생물 발효물에서 높은 활성을 나타내었으며 LC 발효물이 높은 활성을 나타내었다. 따라서 여러 유용미생물을 이용한 인삼꽃 발효의 경우 Bacillus subtilis를 이용하여 발효할 경우 다른 균주들을 이용하는 것보다 항산화 활성 증진에 우수한 효과를 나타낼 것으로 사료되며 다른 생리활성 증진 효과에 대한 연구가 좀 더 진행되어져야 할 것이다.

Keywords

References

  1. Lee NR, Han JS, Kim JS, Choi JE. 2011. Effects of extraction temperature and time on ginsenoside content and quality in ginseng (Panax ginseng) flower water extract. Korean J Medicinal Crop Sci 19: 271-275. https://doi.org/10.7783/KJMCS.2011.19.4.271
  2. Nam KY. 2005. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C.A. Meyer). J Ginseng Res 29: 1-18. https://doi.org/10.5142/JGR.2005.29.1.001
  3. Choi JE, Li X, Han YH, Lee KT. 2009. Changes of saponin contents of leaves, stems and flower-buds of Panax ginseng C.A. Meyer by harvesting days. Korean J Medicinal Crop Sci 17: 251-256.
  4. Kim HG, Kim KY, Cha CJ. 2007. Screening for ginsengfermenting microorganisms capable of biotransforming ginsenosides. Korean J Microbiol 43: 142-146.
  5. Senthil K, Veena V, Mahalakshmi M, Pulla R, Yang DC, Parvatham R. 2009. Microbial conversion of major ginsenoside Rb1 to minor ginsenoside Rd by Indian fermented food bacteria. Afr J Biotechnol 8: 6961-6966.
  6. Park SJ, Kim DH, Paek NS, Kim SS. 2006. Preparation and quality characteristics of the fermentation product of ginseng by lactic acid bacteria (FGL). J Ginseng Res 30:88-94. https://doi.org/10.5142/JGR.2006.30.2.088
  7. Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK. 2012. Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47: 77-84. https://doi.org/10.1016/j.exger.2011.10.007
  8. Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY, Yang DC. 2008. Physico-chemical characteristics of white, fermented and red ginseng extracts. J Ginseng Res 32:238-243. https://doi.org/10.5142/JGR.2008.32.3.238
  9. Kim NY, Han MJ. 2005. Development of ginseng yoghurt fermented by Bifidobacterium spp. Korean J Food Cookery Sci 21: 575-584.
  10. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  11. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  12. Fellegrini N, Ke R, Yang M, Rice-Evans C. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-ethylenebenzothiazoline- 6-sulfonic acid) radical cation decolorization assay. Methods Enzymol 299: 379-389. https://doi.org/10.1016/S0076-6879(99)99037-7
  13. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 230: 70-76.
  14. Oyaizu M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  15. Alpen EL, Mandel HG. 1960. A rapid assay method for tritium in bacterial cells. Biochim Biophys Acta 43: 317-321. https://doi.org/10.1016/0006-3002(60)90442-X
  16. Yu MH, Im HG, Lee HJ, Ji YJ, Lee IS. 2006. Components and their antioxidative activities of methanol extracts from sarcocarp and seed of Zizyphus jujuba var. inermis Rehder. Korean J Food Sci Technol 38: 128-134.
  17. Doh ES, Chang JP, Lee KH, Seong NS. 2010. Ginsenoside change and antioxidation activity of fermented ginseng. Korean J Medicinal Crop Sci 18: 255-265.
  18. Ahn SI, Heuing BJ, Son JY. 2007. Antioxidative activity and nitrite-scavenging abilities of some phenolic compounds. Korean J Food Cookery Sci 23: 19-24.
  19. Park JW, Lee YJ, Yoon S. 2007. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J Food Culture 22: 353-358.
  20. Kim KS, Lee KH, Choi KJ, Kwak YK, Sim KS, Lee KH, Chung HY. 1996. Screening of antioxidative components from red ginseng saponin. Korean J Ginseng Sci 20: 173-178.
  21. Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856. https://doi.org/10.1021/jf030723c
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Kim SJ, Kim SM, Kang SW, Um BH. 2010. The rapid detection of antioxidants from safflower seeds (Carthamus tinctorius L.) using hyphenated-HPLC techniques. Korean J Food Sci Technol 42: 414-419.
  24. Griffin SP, Bhagooli R. 2004. Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302: 201-211. https://doi.org/10.1016/j.jembe.2003.10.008
  25. Ku KM, Kim HS, Kim BS, Kang YH. 2009. Antioxidant activities and antioxidant constituents of pepper leaves from various cultivars and correlation between antioxidant activities and antioxidant constituents. J Appl Biol Chem 52: 70-76. https://doi.org/10.3839/jabc.2009.013
  26. Ryu JS. 2012. Chemical composition and biological functions of red ginseng (Panax ginseng C.A. Meyer) fermented by Phelinus linteus mycelia. PhD Dissertation. Dankook University, Chunan, Korea. p 66.
  27. Chaiyasut C, Kumar T, Tipduangta P, Rungseevijitprapa W. 2010. Isoflavone content and antioxidant activity of Thai fermented soybean and its capsule formulation. Afr J Biotechnol 9: 4120-4126.
  28. Kim JH, Kim JK, Kang WW, Ha YS, Choi SW, Moon KD. 2003. Chemical composition and DPPH radical scavenger activity in different sections of safflower. J Korean Soc Food Sci Nutr 32: 733-738. https://doi.org/10.3746/jkfn.2003.32.5.733
  29. Duh PD. 1998. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free-radical and active oxygen. J Am Oil Chem Soc 75: 455-461. https://doi.org/10.1007/s11746-998-0248-8

Cited by

  1. Efficacy of orally administered ginseng stem and leaf in chickens vol.55, pp.1, 2015, https://doi.org/10.14405/kjvr.2015.55.1.1
  2. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2017.03.003
  3. Antioxidant Activities of Amaranth (Amaranthus spp. L.) Flower Extracts vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.175
  4. Changes in the ginsenoside content during the fermentation process using microbial strains vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.05.005
  5. 아마란스 종자 추출물의 라디칼 저해활성 vol.18, pp.2, 2014, https://doi.org/10.13050/foodengprog.2014.18.2.116
  6. Quality Characteristics of Yakgwa Added with Ginseng Fruit, Leaf and Root vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1981
  7. and their improved bioactivities vol.34, pp.7, 2018, https://doi.org/10.1080/87559129.2018.1424183
  8. 밀가루를 대체한 다양한 종류의 쌀가루 머핀의 품질특성 및 항산화 효과 vol.49, pp.5, 2013, https://doi.org/10.9721/kjfst.2017.49.5.567
  9. 당 침지액 농도에 따른 건조 둥근 마의 품질 특성 및 항산화 효과 vol.30, pp.6, 2013, https://doi.org/10.9799/ksfan.2017.30.6.1176
  10. Quality Characteristics and Antioxidant Activity of Malt Made with Two-Row Barley vol.50, pp.1, 2021, https://doi.org/10.3746/jkfn.2021.50.1.36
  11. Antioxidant Activities of Fermented Sophorae fructus, and Inhibitiory Actions on Tyrosinase and Elastase vol.50, pp.3, 2013, https://doi.org/10.3746/jkfn.2021.50.3.254
  12. Structural Characterization of Lignin-Carbohydrate Complexes (LCCs) and Their Biotransformation by Intestinal Microbiota In Vitro vol.69, pp.43, 2021, https://doi.org/10.1021/acs.jafc.1c03519