DOI QR코드

DOI QR Code

Therapeutic Effects of Curdrania tricuspidata Leaf Extract on Osteoarthritis

골관절염 실험모델에서 꾸지뽕나무 추출물의 골관절염 억제효과 연구

  • Nam, Da-Eun (Dept. of Medical Nutrition, Kyung Hee University) ;
  • Kim, Ok Kyung (Dept. of Medical Nutrition, Kyung Hee University) ;
  • Lee, Jeongmin (Dept. of Medical Nutrition, Kyung Hee University)
  • 남다은 (경희대학교 의학영양학과) ;
  • 김옥경 (경희대학교 의학영양학과) ;
  • 이정민 (경희대학교 의학영양학과)
  • Received : 2013.01.28
  • Accepted : 2013.04.08
  • Published : 2013.05.31

Abstract

The inhibitory effect of ethanol extracts from Curdrania tricuspidata leaves (CTL) on osteoarthritis was investigated in primary cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced arthritis rat model. To identify the effects of CTL 80% ethanol extracts (CTL80) and CTL 10% ethanol extracts (CTL10) against $H_2O_2$ treatment in vitro, cell survival was measured by the MTT assay. Cell survival after $H_2O_2$ treatment increased with CTL80 and CTL10 close to normal up to $300{\mu}g/mL\;H_2O_2$. The mRNA expression of matrix metalloproteinases (MMPs) was determined MMP-7 and MMP-13 (known catabolic factors), were significantly inhibited by CTL 80 and CTL10; a $200{\mu}g/mL$ dose of CTL80 especially decreased MMP-13 expression. In vivo, osteoarthritis was induced by an intra-articular injection of MIA into the knee joints of rats, then CTL80 and CTL10 orally administered daily for 35 days. After the animals were sacrificed, histological evaluations of their knee joints revealed a reduction in polymorphonuclear cell infiltration and smooth synovial lining in the CTL80-500 group. Micro-CT analysis of hind paws from CTL80-500 and CTL10 showed a protection against osteophyte formation, soft tissue swelling, and bone resorption. In conclusion, CTL ethanol extracts are effective in ameliorating joint destruction and cartilage erosion in MIA-induced rats. CTL decreases and normalizes articular cartilage through preventing extracellular matrix degradation and chondrocyte injury, and could potentially serve as a therapeutic treatment for humans.

본 실험에서는 primary culture된 연골세포 in vitro 실험모델과 MIA로 유발한 골관절염 in vivo 실험모델을 이용하여 꾸지뽕나무 잎 추출물의 관절염 예방 효과를 확인하였다. 먼저 MTT 시험법을 통해 세포 사용 적정농도를 $500{\mu}g/mL$ 이하로 결정하여 연골세포사멸 억제를 확인하고, 이를 근간으로 골관절염 동물실험 모델에서 골관절염 예방효과를 확인하였다. $H_2O_2$ 처리에 따른 산화적 독성으로 연골세포 사멸을 유도한 실험에서 꾸지뽕 잎 추출물은 정상세포 수준으로 사멸을 억제하였으며, 이러한 효과는 CTL80의 $200{\mu}g/mL$, CTL10의 $300{\mu}g/mL$ 농도에서 비교적 높게 나타났다. 교원질 합성을 억제하고 분해를 촉진시키는 MMPs(MMP-7, MMP-13)의 발현을 실시간 정량 PCR로 측정하여 발현변화를 살펴보았다. 그 결과 앞선 세포실험 결과와 마찬가지로 CTL80과 CTL10 처리군에서 발현이 유의적으로 낮아졌음을 살펴볼 수 있었다. 특히 CTL80에서 MMP-7과 MMP-13의 발현이 농도 유의적으로 감소하였으며, CTL10의 경우 200, $300{\mu}g/mL$ 농도에서 유의적으로 발현이 감소하는 것을 확인하였다. 세포실험 결과를 바탕으로 동물실험에서의 적정농도를 결정하였으며, 동물독성실험 결과 이상이 없음을 확인하고 실험을 진행하였다. 이때 세포실험결과 선정된 두농도(200, $300{\mu}g/mL$) 간의 차이가 미미하여 동물실험에 적용할 경우 비슷한 실험결과가 나타날 것으로 사료되어 두 실험군 간의 결과를 정확히 구분 짓기 위해 200, $500{\mu}g/mL$ 농도를 선정하여 사용하였다. 골관절염 유발 동물모델을 만들기 위해 SD rat의 관절강에 MIA를 injection 하였으며, 꾸지뽕 잎 에탄올 추출물 투여에 따른 관절염 예방 효과를 관찰하기 위해 관절염 유발 2주일 전부터 1일 1회 경구투여를 실시하고, 유발 후 3주간 지속적으로 투여하고 관찰하였다. 동물 관절의 병리학적 변화를 관찰하기 위하여 Micro-CT 촬영 및 분석을 실시한 결과 Control 군은 골의 강도와 밀도가 감소한 반면, 양성대조군인 MTX 투여군에서 정상군과 비슷한 수준으로 회복된 것을 확인하였고, CTL80-200군과 CTL10-500군에서 Control 군에 비해 유의적으로 수치가 감소하여 골관절염에 따른 손상이 감소한 것을 확인하였다. 동물의 관절조직의 H&E 염색을 통한 조직학적인 변화에서는 골관절염 유발로 연골세포의 손상과 뼈조직의 손상을 관찰하였으며 관절형태를 알아볼 수 없을 정도로 손상된 것을 확인하였다. 반면 CTL80과 CTL10에서는 관절강 세포의 형태가 정상군과 비슷한 둥근모양을 띤 양상을 보였으며 연골조직의 형태가 잘 유지되어 Control 군에 비해 꾸지뽕잎의 투여효과가 나타났음을 관찰하였다. 이상의 결과를 통하여 꾸지뽕 잎 에탄올 추출물은 높은 항관절염 효과가 있을 것으로 사료되며, 항관절염 효능을 지니는 기능성 소재로써 개발 가능성을 확인하였다.

Keywords

References

  1. Korea National Health and Nutrition Examination Survey. 2001. Ministry of Health and Welfare. Seoul, Korea. p 51.
  2. Senior Statistical Reports. 2010. The Statistics Korea. Daejeon, Korea. p 5.
  3. Garner BC, Stoker AM, Kuroki K, Evans R, Cook CR, Cook JL. 2011. Using animal models in osteoarthritis biomarker research. J Knee Surg 24: 251-264. https://doi.org/10.1055/s-0031-1297361
  4. Wu W, Xu X, Dai Y, Xia L. 2010. Therapeutic effect of the saponin fraction from Clematis chinensis Osbeck roots on osteoarthritis induced by monosodium iodoacetate through protecting articular cartilage. Phytother Res 24:538-546.
  5. Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A. 2007. The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets 8: 493-500. https://doi.org/10.2174/138945007780362764
  6. Herrington C, Hall P. 2008. Molecular and cellular themes in inflammation and immunology. J Pathol 214: 123-125. https://doi.org/10.1002/path.2303
  7. Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Sama D, Calatroni A. 2009. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes. J Cell Biochem 160: 83-92.
  8. Phitak T, Choocheep K, Pothacharoen P, Pompimon W, Premanode B, Kongtawelert P. 2009. The effects of p-hydroxycinnamaldehyde from Alpinia galanga extracts on human chondrocytes. Phytochemistry 7: 237-243.
  9. Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, Brown KK, Hsieh LC, Almstead NG, De B, Natchus MG, Pikul S, Taiwo YO. 2001. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage 9: 751-760. https://doi.org/10.1053/joca.2001.0472
  10. Okada A, Okada Y. 2009. Progress of research in osteoarthritis. Metalloproteinases in osteoarthritis. Clin Calcium 19: 1593-1601.
  11. Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, Okada Y. 2000. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 59: 455-461. https://doi.org/10.1136/ard.59.6.455
  12. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J. 2009. Antioxidant activity of methanol extracts from Curdrania tricuspidata Bureau according to harvesting parts and time. Korean J Medicinal Crop Sci 17: 115-120.
  13. Oh PS, Lim KT. 2011. Anti-inflammatory effect of glycoprotein isolated from Cudrania tricuspidata Bureau: involvement of MAPK/NF-${\kappa}B$ signaling. Immunol Invest 40:76-91. https://doi.org/10.3109/08820139.2010.516049
  14. Kang DG, Hur TY, Lee GM, Oh H, Kwon TO, Sohn EJ, Lee HS. 2002. Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in NO-dependent hypertension. Life Sci 70: 2599-2609. https://doi.org/10.1016/S0024-3205(02)01547-3
  15. Lee BW, Kang NS, Park KH. 2004. Isolation of antibacterial prenylated flavonoids from Cudrania tricuspidata. J Korean Soc Appl Biol Chem 47: 270-273.
  16. Choi MS, Kwak SS, Liu JR, Lee IK, Yoo ID. 2001. Production of novel flavonoids in cell cultures of Cudrania tricuspidata. J Korean Plant Tissue Culture 28: 159-164.
  17. Lee JW, Do JH. 2005. Market trend of health functional food and the prospect of ginseng market. J Ginseng Res 29: 206-214. https://doi.org/10.5142/JGR.2005.29.4.206
  18. Kim HK. 2004. Current status and prospects of nutraceuticals. Food Industry and Nutrition 9(1): 1-14.
  19. Sakuma S, Nishigaki F, Magari K, Ogawa T, Miyata S, Ohkubo Y, Goto T. 2001. FK506 is superior to methotrexate in therapeutic effects on advanced stage of rat adjuvant-induced arthritis. Inflamm Res 50: 509-514. https://doi.org/10.1007/PL00000227
  20. Mathy-Hartert M, Martin G, Devel P, Deby-Dupont G, Pujol JP, Reginster JY, Henrotin Y. 2003. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflamm Res 52: 111-118. https://doi.org/10.1007/s000110300023
  21. Asada S, Fukuda K, Oh M, Hamanishi C, Tanaka S. 1999. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm Res 4 8: 399-403. https://doi.org/10.1007/s000110050478
  22. Khan IM, Gilbert SJ, Caterson B, Sandell LJ, Archer CW. 2008. Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(-) in adult bovine articular cartilage. Osteoarthritis Cartilage 16: 698-707. https://doi.org/10.1016/j.joca.2007.10.004
  23. Patwari P, Cook MN, DiMicco MA, Blake SM, James IE, Kumar S, Cole AA, Lark MW, Grodzinsky AJ. 2003. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines. Arthritis Rheum 48: 1292-1301. https://doi.org/10.1002/art.10892
  24. Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ. 2005. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52: 2386-2395. https://doi.org/10.1002/art.21215
  25. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS. 2003. Weight bearing as a measure of disease progression and efficacy of anti- inflammatory compounds in a model of monosodium iodoacetate- induced osteoarthritis. Osteoarthritis Cartilage 11: 821-830. https://doi.org/10.1016/S1063-4584(03)00163-8
  26. Combe R, Bramwell S, Field MJ. 2004. The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats? Neurosci Lett 370: 236-240. https://doi.org/10.1016/j.neulet.2004.08.023
  27. Holderbaum D, Haqqi TM, Moskowitz RW. 1999. Genetics and osteoarthritis: exposing the iceberg. Arthritis Rheum 42: 397-405. https://doi.org/10.1002/1529-0131(199904)42:3<397::AID-ANR1>3.0.CO;2-X
  28. Sulzbacher I. 2012. Osteoarthritis: histology and pathogenesis. Wien Med Wochenschr doi: 10.1007/s10354-012-0168-y.

Cited by

  1. Development of Whitening Cosmetic Ingredients from Cudrania tricuspidata Stem Extract vol.14, pp.3, 2016, https://doi.org/10.20402/ajbc.2016.0063
  2. 꾸지뽕나무 추출물의 피부 생리 활성 vol.32, pp.2, 2013, https://doi.org/10.12925/jkocs.2015.32.2.260
  3. [Retracted] Optimization of Jirisan Mountain Cudrania tricuspidata leaf substance extraction across solvents and temperatures vol.21, pp.2, 2013, https://doi.org/10.3831/kpi.2018.21.006
  4. 골담초 열수추출물의 이화학적 특성 및 MIA를 이용한 동물모델에서 골관절염 개선 효과 vol.32, pp.6, 2019, https://doi.org/10.9799/ksfan.2019.32.6.678