DOI QR코드

DOI QR Code

Evaluation on the Impact of Extreme Droughts in South Korea using the SPEI and RCP8.5 Climate Change Scenario

표준강수 증발산량지수(Standardized Precipitation Evapotranspiration Index)와 대표농도경로(Representative Concentration Pathways)를 이용한 남한지역 미래 가뭄의 변화전망

  • Kim, ByungSik (Kangwon National University, Department of Urban &Environmental Disaster Prevention Engineering, School of Disaster Prevention) ;
  • Sung, Jang Hyun (Ministry of Land, Infrastructure and Transport, Yeongsan Flood Control Office) ;
  • Lee, Byung Hyun (Kangwon National University, Department of Urban &Environmental Disaster Prevention Engineering, School of Disaster Prevention) ;
  • Kim, Do Jung (Ministry of Land, Infrastructure and Transport, Yeongsan Flood Control Office)
  • 김병식 (국립강원대학교 소방방재학부 & 방재전문대학원 도시환경방재공학과) ;
  • 성장현 (국토교통부 영산강홍수통제소) ;
  • 이병현 (국립강원대학교 방재전문대학원 도시환경방재공학전공) ;
  • 김도정 (국토교통부 영산강홍수통제소)
  • Received : 2013.02.22
  • Accepted : 2013.03.19
  • Published : 2013.04.30

Abstract

The Standardized Precipitation Index (SPI), a method widely used to analyze droughts related to climate change, does not consider variables related to temperature that it is limited in that it can't consider changes in hydrological balance such as precipitation and evapotranspiration from climate change. If we were to consider only the future increase in precipitation from climate change, droughts may decrease. However, because usable water can diminish from an increase in evapotranspiration, it is indispensable to research to project droughts considering the amount of evapotranspiration as well as project and evaluate potential droughts considering the impact of climate change. As such, this study evaluated the occurrence of droughts using the Standardized Precipitation Evapotranspiration Index (SPEI) as a drought index of a new concept that is similar to SPI but includes the temperature variability. We extracted simulated future precipitation and temperature data(2011~2099) from the RCP climate change scenario of IPCC AR5 to evaluate the impact of future climate change on the occurrence of droughts of South Korea. We thus analyzed the ratio of evapotranspiration to precipitation of meteorological observatories nationwide. In addition, we calculated the SPEI in the process to evaluate the future occurrence of droughts of South Korea. As a result, the farther into the future, the more precipitation increased. But because of an increase in evapotranspiration also from a rise in temperature and continued dryness, the severity of droughts are forecast to exacerbate.

현재 기후변화와 관련하여 가뭄분석에 널리 쓰이고 있는 방법인 표준강수지수(Standardized Precipitation Index, SPI)는 기온과 관련된 변수를 고려하지 않기 때문에 기후변화로 인한 강수, 증발산 등의 물수지 변화를 고려할 수 없다는 한계점이 있다. 기후변화로 인한 미래 강수량의 증가만을 생각하면 가뭄이 감소할 수 있으나, 증발산량의 증가로 인해 사용 가능한 물의 양이 줄어들 수 있으므로 기후변화의 영향을 고려하여 잠재적 가뭄상태를 평가하고 예측하려면 증발산량을 고려한 가뭄 전망 연구가 반드시 필요하다. 이에 본 연구에서는 SPI와 유사하지만 기온의 변동성이 포함된 새로운 개념의 가뭄지수인 표준강수 증발산량지수(Standardized Precipitation Evapotranspiration Index, SPEI)를 이용하여 가뭄발생을 평가하였다. 먼저 본 연구에서는 미래의 기후변화가 한반도의 가뭄발생에 미치는 영향을 평가하기 위해 IPCC AR5의 RCP기후변화 시나리오로부터 모의된 미래강수 및 기온자료(2011년~2099년)를 추출하였으며 전국 기상관측소의 강수 대비 증발산의 비율을 분석하였다. 또한, 이를 통해 SPEI를 산정하여 남한지역의 미래 가뭄발생의 변화를 평가하였다. 그 결과, 미래로 갈수록 강수량이 증가하고는 있으나 건조지속기간의 증가 및 기온 상승으로 인한 증발산의 증가로 인해 가뭄의 심도가 증가될 수 있음을 확인할 수 있었다.

Keywords

References

  1. Abramopoulos, F., Rosenzweig, C., and Choudhury, B. (1988) Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration, Journal of Climate, Vol. 1, pp. 921-941. https://doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2
  2. Agricultural and Rural Infrastructure Corporation (2001) Drought Overcoming.
  3. Boo, K.-O., Kwon, W.-T., Oh, J.-H., and Baek, H.-J. (2004) "Response of global warming on regional climate change over Korea: An experiment with the MM5 model", Geophys. Res. Lett., 31, L21206, DOI:10.1029/2004GL021171.
  4. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C.D., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J., (2008) "Evaluation of HadGEM2 model", Hadley Centre Technical Note
  5. Du Pisani, C.G., Fouche, H.J., and Venter, J.C. (1998) "Assessing rangeland drought in South Africa", Agricultural Systems, Vol. 57, pp. 367-380. https://doi.org/10.1016/S0308-521X(98)00024-9
  6. Dubrovsky, M., Svoboda, M.D., Trnka, M., Hayes, M.J., Wilhite, D. A., Zalud, Z., and Hlavinka, P. (2008) "Application of relative drought indices in assessing climate change impacts on drought conditions in Czechi", Theoretical and Applied Climatology, Vol. 96, No. 1, pp. 55-171.
  7. Guttman, N.B. (1998) Comparing the Palmer drought index and the standardized precipitation index, Journal of the American Water Resources Association, Vol. 34, pp. 113-121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
  8. Heim, R.R. (2002) "A review of twentieth-century drought indices used in the United States", Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2
  9. Hu, Q. and Willson, G.D. (2000) Effect of temperature anomalies on the Palmer drought severity index in the central United States, International Journal of Climatology, Vol. 20, pp. 1899-1911. https://doi.org/10.1002/1097-0088(200012)20:15<1899::AID-JOC588>3.0.CO;2-M
  10. Im, E.-S. and Kwon, W.-T. (2007) "Characteristics of extreme climate sequences over Korea using a regional climate change scenario", SOLA, Vol.3, pp. 17-20. https://doi.org/10.2151/sola.2007-005
  11. IPCC (2007) Climate Change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment, in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  12. Jones, P.D. and Moberg, A. (2003) Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001, Journal of Climate, Vol. 16, pp. 206-223. https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
  13. Kempes, C.P., Myers, O.B., Breshears, D.D., and Ebersole, J.J. (2008) Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data, Journal of Arid Environments, Vol. 72, pp. 350-357. https://doi.org/10.1016/j.jaridenv.2007.07.009
  14. Keyantash, J. and Dracup, J. (2002) "The quantification of drought: An evaluation of drought indices", Bulletin of the American Meteorological Society, Vol. 83, pp. 1167-1180. https://doi.org/10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2
  15. Kim, B.-S., Kwon, H.-H., and Kim, H.-S. (2011) Evaluation on impact of climate change on drought risk, Korean Wetlands Society Journal, Vol. 13, No. 1, pp. 1-11.
  16. Kim, B.-S., Sung, J.H., Kang, H.-K., and Cho, C.-H. (2012) Assessment of drought severity in the South Korean Region using SPEI, Korea Water Resource Association Journal, Korea Water Resource Association, Vol. 45, No. 9, pp. 887-900. https://doi.org/10.3741/JKWRA.2012.45.9.887
  17. Koo, G.-S., Boo, K.-O., and Kwon, W.-T. (2009) "Projection of temperature over Korea using an MM5 regional climate simulation", Climate Research, Vol. 40, pp. 241-248. https://doi.org/10.3354/cr00825
  18. Korea Environment Institute (2011) The Present Water Resources and Impact Factors: Focusing on Climate Change.
  19. Kwon, W.-T. and Baek, H.-J. (2006) "Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change", Geophys. Res. Lett., Vol. 33, L01701, DOI:10.1029/2005GL023378.
  20. Lee, J.-H., Seo J.-I.,, and Kim C.-J. (2012) Tendency, Periodicity, and Frequency of Droughts in Korean Peninsula using Drought Index, Korean Water Resources Society Journal, Vol. 45, No. 1, pp. 75-89. https://doi.org/10.3741/JKWRA.2012.45.1.75
  21. Loukas, A., Vasiliades, L., and Tzabiras, J. (2008) "Climate change effects on drought severity", Advances in Geosciences, Vol. 17, pp. 23-29. https://doi.org/10.5194/adgeo-17-23-2008
  22. Mavromatis, T. (2007) Drought index evaluation for assessing future wheat production in Greece, International Journal of Climatology, Vol. 27, pp. 911-924. https://doi.org/10.1002/joc.1444
  23. McKee, T.B., Doeskin, N.J., and Kleist, J. (1993) "The relationship of drought frequency and duration to time scales", Proc. 8th Conf. on Applied Climatology, January 17-22, 1993, American Meteorological Society, Boston, Massachusetts, pp. 179-184.
  24. Ministry of Construction and Transportation (2001) Drought Record Survey Report.
  25. Ministry of Construction and Transportation, Korea Water Resources Corporation (2005) Report on Drought Management Monitoring System Establishment.
  26. National Institute of Meteorological Research (2011) A Study on the Support and Use of Climate Change Forecast Technology (III).
  27. Palmer, W.C. (1965) Meteorological drought, Research paper No.45, U.S. Weather Bureau.
  28. Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J.P., and Menzel, A. (2006) "Heat and drought 2003 in Europe: A climate synthesis", Annals of Forest Science, Vol. 63, pp. 569-577. https://doi.org/10.1051/forest:2006043
  29. Shafer, B.A. and Dezman, L.E. (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snow pack runoff areas, Proceedings of the Western Snow Conference, Reno, NV, pp. 164-175.
  30. Sheffield, J. and Wood, E.F. (2008) "Projected changes in drought occurrence under future global warming from multi-model", multi-scenario, IPCC AR4 simulation, Climate Dynamics, Vol. 31, pp. 79-105. https://doi.org/10.1007/s00382-007-0340-z
  31. Subimal G. and Mujumdar, P.P. (2007) "Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment", Water Resources Research, Vol. 43, No.7, W07405.
  32. Sung, J.H., Kang, H.-K., Park, S.-H., Cho, C-.H., Bae, D-.H., and Kim, Y.-O. (2012) "Forecast of extreme precipitation in Korea at the end of the 21st century based on RCP", Korean Meteorological Society, Vol.22(2), pp. 221-231.
  33. Thornthwaite, C.W. (1948) "An approach toward a rational classification of climate", Geographical Review, Vol. 38, pp. 55-94. https://doi.org/10.2307/210739
  34. Thornthwaite, C.W. and Mather, J.R. (1955) The water balance, Publications in Climatology, Vol.8(1), pp. 1-104.
  35. Vicente-Serrano S.M., Santiago Begueria, Juan, I. Lopez-Moreno (2010) A multi scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index - SPEI, Journal of Climate, Vol. 23, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  36. Walters, D.N., Best, M.J., Bushell, A.C., Copsey, D., Edwards, J.M., Falloon, P.D., Harris, C.M., Lock, A.P., Manners, J.C., Morcrette, C.J., Roberts, M.J., Stratton, R.A., Webster, S., Wilkinson, J.M., Willett, M.R., Boutle, I.A., Earnshaw, P.D., Hill, P.G., MacLachlan, C., Martin, G.M., Moufouma-Okia, W., Palmer, M.D., Petch, J.C., Rooney, G.G., Scaife, A.A., and Williams, K.D. (2011) "The met office unified model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations", Geosci. Model Dev. Discuss., Vol. 4, pp. 1213-1271. https://doi.org/10.5194/gmdd-4-1213-2011

Cited by

  1. Risk Assessment of Drought for Regional Upland Soil According to RCP8.5 Scenario Using Soil Moisture Evaluation Model (AFKE 0.5) vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.434
  2. Comparison of Meteorological Drought and Hydrological Drought Index vol.48, pp.1, 2015, https://doi.org/10.3741/JKWRA.2015.48.1.69
  3. Effects of climate change on paddy water use efficiency with temporal change in the transplanting and growing season in South Korea vol.34, pp.6, 2016, https://doi.org/10.1007/s00271-016-0514-8
  4. Appraisal of drought characteristics of representative drought indices using meteorological variables pp.1976-3808, 2017, https://doi.org/10.1007/s12205-017-1744-x
  5. Assessment of Meteorological Drought Indices in Korea Using RCP 8.5 Scenario vol.10, pp.3, 2018, https://doi.org/10.3390/w10030283
  6. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327
  7. Reliability–Resiliency–Vulnerability Approach for Drought Analysis in South Korea Using 28 GCMs vol.10, pp.9, 2018, https://doi.org/10.3390/su10093043
  8. Statistical Analysis of Changes in Reservoir Storage According to Standard Precipitation Evapotranspiration Index (SPEI) and Dam Water Release vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.409