DOI QR코드

DOI QR Code

Biological Control of Root-knot Nematode by Lysobacter capsici YS1215

Lysobacter capsici YS1215를 이용한 뿌리혹선충(Root-knot nematode)의 생물학적 방제

  • Lee, Yong-Sung (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University) ;
  • Park, Yun-Suk (Purne Co., Ltd., Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Sun-Bae (Damyang Agriculture Technical Center) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
  • Received : 2013.01.03
  • Accepted : 2013.02.28
  • Published : 2013.04.30

Abstract

The experiments were carried out to investigate the biocontrol potential of Lysobacter capsici YS1215 on root-knot nematode and to characterize its lytic enzyme activities. L. capsici YS1215 showed chitinase and gelatinase activities on the medium containing 0.5% chitin or 0.5% gelatin as substrates. Cell growth of L. capsici YS1215 was highest at 6 days, and the highest activities of chitinase (4.0 unit $ml^{-1}$) and gelatinase (7.43 unit $ml^{-1}$) were observed on 3 and 5 days after incubation, respectively. To investigate the effect of L. capsici YS1215 on tomato growth and nematode infection, the plants in pot trial were treated with bacterial culture (BC), half of bacterial culture (HBC), only bacterial medium (BM), tap water (TW) and commercial nematicide (CN). HBC treatd plants showed the higher shoot fresh weight and dry weight on $5^{th}$week after incubation while BM, HBC and BC had consistently higher values than TW at $9^{th}$ week. HBC appeared to be the highest shoot fresh length at $9^{th}$ week. Both CN and BC showed lower number of egg mass, root gall, and population of juveniles in soil compared to BC, HBC, BM and TW. These results suggest that L. capsici YS1215 with its strong ability of lytic enzyme production can be one of the most significant candidates for biocontrol agents against root-knot nematodes.

Lysobacter capsici YS215의 특성 및 뿌리혹선충 방제에 미치는 영향을 조사하였다. YS1215의 생육은 배양 6일째 최고였으며, 생육에 따른 chitinase와 gelatinase의 활성은 각각 3일째와 5일째에 가장 높은 활성을 보였다. YS1215 배양액이 선충 피해 방제와 식물 생장에 미치는 영향을 조사해 본 결과, 5주째 식물 지상부 생체중 및 건조중에서 배양액 반량구에서 가장 높게 나타났지만, 9주째에는 미생물 배양액, 미생물 배양액 반량구 및 배지액 처리구에서 차이를 보이지 않았다. 하지만 9주째 미생물 배양액, 미생물 배양액 반량구 및 배지액 처리구가 물처리구 보다 높게 나타났다. 지상부 길이에서는 미생물 배양액 반량구 처리구가 가장 높았다. 선충 피해 방제에 있어서 난낭수, 뿌리혹수 및 토양내 유충수에서 각각 농약 처리구에서 가장 낮게 나타났으나, 미생물 배양액 처리구와의 유의적 차이는 보이지 않았다. 미생물 배양액 처리구는 미생물 배양액 반량구 및 물 처리구와는 유의적 차이가 있는 것으로 조사되었다. 그러므로 다양한 분해효소를 생성하는 L. capsici YS1215의 뿌리혹선충방제에 대한 충분한 가능성과 가치가 있다고 사료된다.

Keywords

References

  1. Abo-Elyousr, K.A., Z. Khan, M.E. Award, and M.F. Abedel-Moneim. 2010. Evaluation of plant extracts and Pseudomonas spp. for control of root-knot nematode, Meloidogyne incognita on tomato. Nematropica 40(2):289-299.
  2. Atkins, S.D., L. Hidalgo-Diaz, H. Kalisz, T.H. Mauchline, P.R. Hirsch, and B.R. Kerry. 2003. Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Manag Sci. 59:183-189. https://doi.org/10.1002/ps.603
  3. Birch, A.N.E., W.M. Robertson, and L.E. Fellows. 1993. Plant products to control plant parasitic nematodes. Pestic. Sci. 39: 141-145. https://doi.org/10.1002/ps.2780390207
  4. Broadbent, P., K.F Baker, N. Franks, and J. Holland. 1977. Effect of Bacillus spp. on increased growth of seedling in steamed and in non treated soil. Phytopathology 67:10271034.
  5. Chen, J., W.H. Moore, G.Y., Yuen, D. Kobayashi, and E.P. Caswell-Chen. 2006. Influence of Lysobacter enzymogenes Strain C3 on Nematodes. J Nematol 38(2):233-239.
  6. Christensen, P. and D. Cook. 1978. Lysobacter, a new genus of non-fruiting, gliding bacteria with a high base ratio (soil and water organisms). Int. J. Syst. Bacteriol. 28:367-393. https://doi.org/10.1099/00207713-28-3-367
  7. Choi, Y.E. and Y.J. La. 1982. Plant nematology. pp.58-68.
  8. Devidas, P. and L.A. Rehberger. 1992. The effects of exotoxin (thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil 145: 115-120. https://doi.org/10.1007/BF00009547
  9. Dicklow, M.B., N. Acosta, and B.M. Zuchkerman. 1993. A novel Streptomyces species for controlling plant-parasitic nematodes. J. Chem. Ecol. 19:159-173. https://doi.org/10.1007/BF00993686
  10. Gautam, A., Z.A. Siddiqui, and I. Mahmood. 1995. Intergated management of Meloidogyne incognita on tomato. Nematologia Mediterranea 23:245-247.
  11. Kang, S.J., Y.S. Lee, S.Y. Lee, G.Y. Yun, S.H. Hong, Y.S. Park, I.S. Kim, R.D. Park, and K.Y. Kim. 2010. Biological Control of Diamondback Moth (Plutella xylostella L.) by Lysobacter antibioticus HS124. Korean J. Soil Sci. Fert. 43(5):537-544 (2010)
  12. Kim, D.J. and K.J. Choi. 2001. Effects of incorporation method of nematicides on reproduction of Meloidogyne arenaria. Kor. J. Appl. Entomol. 40:89-95.
  13. Kim, J.I. and S.C. Han. 1988. Effect of solarization for control of root-knot nematode (Meloidogyne spp.) in vinyl house. Kor. J. Appl. Entomol. 27: 1-5.
  14. Kim, S.S., S.I. Kang, J.S. Kim, Y.S. Lee, S.H. Hong, W.N. Kyaw, and K.Y. Kim. 2011. Biological control of root-knot nematode by Streptomyces sampsonii KK1024. Korean J. Soil Sci. Fert. 44(6):1150-1157. https://doi.org/10.7745/KJSSF.2011.44.6.1150
  15. Ko, H.S., R.D. Jin, B.H. Krishnan, S.B. Lee, and K.Y. Kim. 2009. Biocontrol Ability of Lysobacter antibioticus HS124 Against Phytophthora Blight Is Mediated by the Production of 4-Hydroxyphenylacetic Acid and Several Lytic Enzymes. CurrMicrobiol 59:608-615.
  16. Kwon, T.Y., K.C. Jung, S.D. Park, Y.G. Sim, and B.S. Choi. 1998. Cultural and chemical control of root-knot nematodes, Meloidogyne sp. on oriental melon in plastic film house. RDA J. Crop Prot. 40:96-101.
  17. Lee, J.G. 2003. Occurrence, ecology and control of root-knot nematodes under greenhouse cultivation system. Ph.D. Thesis, Chungnam National University, Daejeon, Korea.
  18. Lee, J.S., H.Y, Choo, and D.W. Lee. 2011. Nematicidal Efficacy of Herbal Extracts against Meloidogyne Hpala. Kor. J. Appl. Entomol. 50(4): 315-324. https://doi.org/10.5656/KSAE.2011.10.0.57
  19. Lingapa, Y. and J.L. Lockwood. 1962. Chitin media for selected isolation and culture of Actinomycetes. Phytopathology 52:317-323.
  20. Li, W., D.P. Roberts, P.D. Derby, S.L.F. Meyer, S. Lohrke, R.D. Lumsden, and K.P. Hebbar. 2002. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21:129-135. https://doi.org/10.1016/S0261-2194(01)00074-6
  21. Lim, S.H., Y.Z. Zhu, M.S. Kim, Y.S. Lee, J.S. Son, D.S. Park, J.H. Hur, H.Y. Kim, H.J. Choi, K.H. Kim, and S.M. Kim. 2004. Nematicidal activity of Korean native plants against root-knot nematode, Meloidogyne incognita. Kor. J. Pestic. Sci. 8:353-357.
  22. Mandl, I., J.D. MacLennan, E.L. Howes, R.H. DeBellis, and A. Sohler. 1953. Isolation and characterization of proteinase and collagenase from Cl. histolyticum. J Clin Invest 32:1323-1329. https://doi.org/10.1172/JCI102861
  23. Moore, S. and W.H. Stein. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176:367-388
  24. Oka, Y., H. Koltai, M. Bar-Eyal, M. Mor, E. Sharon, I. Chet, and Y. Spiegel. 2000. New strategies for the control of plant-parasitic nemaotdes. Pest Manag Sci 56:983-988. https://doi.org/10.1002/1526-4998(200011)56:11<983::AID-PS233>3.0.CO;2-X
  25. Park, M.H., J.K. Kim, W.H. Choi, and M.H. Yoon. 2001. Nematicidal effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fert. 44(2):228-235.
  26. Park, J.H., R. Kim, Z. Aslam, C.O. Jeon, and Y.R. Chung. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387-392. https://doi.org/10.1099/ijs.0.65290-0
  27. Sasser, J.N. 1980. Root-knot nematode: a global menace to crop production. Plant Dis. 64:36-41. https://doi.org/10.1094/PD-64-36
  28. Sela, S., H. Schickler, I. Chet, and Y. Spigel. 1998. Purification and characterization of Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur. J. Plant. Pathol. 104:59-67. https://doi.org/10.1023/A:1008643414691
  29. Siddiqui, Z.A. and I. Mahmood. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol. 69:167-179. https://doi.org/10.1016/S0960-8524(98)00122-9
  30. Tunlid, A. and S. Janson. 1991. Proteases and their involvement in the infection and immobilization of nematode by the nematophagous fungus Arthrobotrys oligospora. App. Environ. Microbiol. 57:2868-2872.
  31. Yoon, G.Y., Y.S. Lee, S.Y. Lee, R.D. Park, H.N. Hyun, Y. Nam, and K.Y. Kim. 2012. Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14(2): 175-184. https://doi.org/10.1163/138855411X584124
  32. Zhu, Y.Z., D.S. Park, M.R. Cho, J.H. Hur, and C.K. Lim. 2005. Suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans. J. Pestic. Sci. 9(4):437-441.

Cited by

  1. Control of the Root-Knot Nematode (Meloidogyne spp.) on Cucumber by a Liquid Bio-Formulation Containing Chitinolytic Bacteria, Chitin and Their Products vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.112
  2. Optimal Medium Composition Suitable for Enhancement of Biofertilizer's Shelf Life vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.456