DOI QR코드

DOI QR Code

Solubility of triclocarban in pure alkanols at different temperatures

  • Lim, Junhyuk (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Jang, Sunghyun (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kim, Hwayong (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Cho, Hye Kyoung (Department of Dermatological Health Management, Eulji University) ;
  • Shin, Moon Sam (Department of Dermatological Health Management, Eulji University)
  • Received : 2012.03.19
  • Accepted : 2012.06.23
  • Published : 2013.01.01

Abstract

Triclocarban solubility in six pure alcohols was determined in the temperature interval from 278.15 to 318.15 K. The experimental solubility data were correlated by the Wilson, the nonrandom two liquid (NRTL) and the universal quasi-chemical (UNIQUAC) models. The data are well fitted with all three models for the six pure alcohols studied here. Also, ab initio geometry optimization of triclocarban was performed using the density functional theory (DFT) based on $DMol^3$ method.

Keywords

References

  1. D. L. Breneman, J.M. Hanifin, C. A. Berge, B.H. Kewick and P.B. Neumann, Cutaneous Medicine for the Practitioner, 66, 296 (2000).
  2. S. Luby, M. Agboatwalla, D. Feikin, J. Painter, W. Billhimer, A. Altaf and R. Hoekstra, The Lancet, 366, 225 (2005). https://doi.org/10.1016/S0140-6736(05)66912-7
  3. O. Exner and H. M. Hoffmann, US Patent, 6,121,214 (2000).
  4. L.R. Charlton and J.T. McGillycuddy, US Patent, 6,224,886 (2001).
  5. A. C. Moffat, M. D. Osselton and B. Widdop, Clarke's Analysis of Drugs and Poisons, $3^{rd}$ Ed., Vol. 2, Pharmaceutical Press, London (2004).
  6. D. M. Arogon, A. Sosnik and F. Martinez, J. Sol. Chem., 38, 1493 (2009). https://doi.org/10.1007/s10953-009-9464-6
  7. Q. S. Ki, Z. Ki and S. Wang, J. Chem. Eng. Data, 52, 151 (2007). https://doi.org/10.1021/je060329l
  8. D. Wei and L. Chen, Fluid Phase Equilib., 277, 9 (2009). https://doi.org/10.1016/j.fluid.2008.11.005
  9. R. R. Fu, W. D. Yan and M. Zhu, J. Chem. Eng. Data, 49, 262 (2004). https://doi.org/10.1021/je030193g
  10. G.M. Wilson, J. Am. Chem. Soc., 86, 127 (1964). https://doi.org/10.1021/ja01056a002
  11. H. Renon and J.M. Prausnitz, AIChE J., 14, 135 (1968). https://doi.org/10.1002/aic.690140124
  12. D. S. Abrams and J.M. Prausnitz, AIChE J., 21, 116 (1975). https://doi.org/10.1002/aic.690210115
  13. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, 1994 Ed., NIST.
  14. J. B. Dalton and C. L. A. Schmidt, J. Biol. Chem., 103, 549 (1933).
  15. DIPPR 801 Database, Design Institute for Physical Property Data, American Institute of Chemical Engineers.
  16. B. E. Polling, J. M. Prausnitz and J. P. O'Connell, The Properties of Gases and Liquids, $ 5^{th}$ Ed., McGrow-Hill, New York (2001).
  17. L. Constantinou, R. Gani and J. P. O'Connell, Fluid Phase Equilib., 103, 11 (1995). https://doi.org/10.1016/0378-3812(94)02593-P
  18. S. I. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, $4^{th}$Ed., John Wiley & Sons, Inc., New Jersey (2005).
  19. J.M. Prausnitz, R. N. Lichtenthaler and E.G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, $3^{rd}$ Ed., Prentice Hall PTR, New Jersey (1999).
  20. D. M. Aragon, M. A. Ruidiaz, E. F. Vargas, C. Bregni, D. A. Chiappetta, A. Sosnik and F. Martínez, J. Chem. Eng. Data, 53, 2576 (2007).
  21. B. Delley, J. Chem. Phys., 113, 7756 (2000). https://doi.org/10.1063/1.1316015
  22. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  23. J. Chang, Korean Chem. Eng. Res., 49, 361 (2011).

Cited by

  1. The Flash Point Measurement for Binary Flammable Mixture vol.18, pp.5, 2013, https://doi.org/10.7842/kigas.2014.18.5.60
  2. Seta-flash 밀폐식 방법에 의한 n-hexanol+n-butyric acid 계와 n-butanol+propionic acid 계의 인화점 측정 vol.29, pp.6, 2013, https://doi.org/10.14346/jkosos.2014.29.6.076
  3. UNIFAC 그룹 기여 모델에 의한 n-Octnae+n-Decane 계와 n-Octane+n-Dodecane 계의 인화점 계산 vol.30, pp.4, 2013, https://doi.org/10.14346/jkosos.2015.30.4.86
  4. 개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정 vol.24, pp.4, 2015, https://doi.org/10.5855/energy.2015.24.4.018
  5. 밀폐식 장치를 사용한 Water+1-Propanol 과 Water+2-Propanol의 인화점 측정과 계산 vol.25, pp.4, 2013, https://doi.org/10.5855/energy.2016.25.4.190
  6. 이성분계 용액의 인화점 실험값을 이용한 기포점 계산 vol.31, pp.6, 2016, https://doi.org/10.14346/jkosos.2016.31.6.39
  7. 삼성분계 혼합물인 n-Nonane+n-Decane+n-Dodecane 계의 하부인화점 측정 vol.20, pp.6, 2016, https://doi.org/10.7842/kigas.2016.20.6.31
  8. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C vol.46, pp.1, 2013, https://doi.org/10.1063/1.4970519
  9. Solubility Modeling and Mixing Thermodynamics of Thiamphenicol in Water and Twelve Neat Organic Solvents from T = (278.15 to 318.15) K vol.62, pp.10, 2017, https://doi.org/10.1021/acs.jced.7b00542
  10. 이성분계 혼합물의 하부 인화점에 의한 이슬점 예측 vol.32, pp.6, 2013, https://doi.org/10.14346/jkosos.2017.32.6.34
  11. Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0116-7
  12. EFFECTS OF PH, TEMPERATURE, IONIC STRENGTH AND ORGANIC MATTER ON TRICLOCARBAN SOLUBILITY vol.29, pp.3, 2013, https://doi.org/10.3846/jeelm.2021.14638