DOI QR코드

DOI QR Code

Solubility of carbon dioxide in ammonium-based ionic liquids: Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide

  • Nam, Sang Gyu (Department of Chemical Engineering and Nano-Bio Technology, Hannam University) ;
  • Lee, Byung-Chul (Department of Chemical Engineering and Nano-Bio Technology, Hannam University)
  • Received : 2012.08.29
  • Accepted : 2012.10.13
  • Published : 2013.02.01

Abstract

Solubility results of carbon dioxide ($CO_2$) in two ammonium-based ionic liquids, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4,1,1,1][$Tf_2N$]) and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N1,8,8,8][$Tf_2N$]), are presented at pressures up to approximately 45 MPa and temperatures ranging from 303.15 K to 343.15 K. The solubility was determined by measuring bubble point pressures of mixtures of $CO_2$ and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. Sharp increase of equilibrium pressure was observed at high $CO_2$ compositions. The $CO_2$ solubility in ionic liquids increased with the increase of the total length of alkyl chains attached to the ammonium cation of the ionic liquids. The experimental data for the $CO_2$+ionic liquid systems were correlated using the Peng-Robinson equation of state.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Sheldon, Chem. Commun., 2399 (2001).
  2. W. Xu and C. A. Angell, Science, 302, 422 (2003). https://doi.org/10.1126/science.1090287
  3. R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002). https://doi.org/10.1021/ja025790m
  4. L. A. Blanchard, D. Hancu, E. J. Beckmanm and J. F. Brennecke, Nature, 399, 28 (1999).
  5. S. K. Jeong, D. H. Kim, I. H. Baek and S. H. Lee, Korean Chem. Eng. Res., 46, 492 (2008).
  6. J.E. Bara, T.K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res., 48, 2739 (2009). https://doi.org/10.1021/ie8016237
  7. M. H. Cho, H. Lee and H. Kim, Korean Chem. Eng. Res., 48, 1 (2010).
  8. J. F. Brenneke and B. E. Gurkan, J. Phys. Chem. Lett., 1, 3459 (2010). https://doi.org/10.1021/jz1014828
  9. M. B. Shiflett, A.M. Niehaus and A. Yokozeki, J. Chem. Eng. Data, 55, 4785 (2010). https://doi.org/10.1021/je1004005
  10. D. D. Iarikov, P. Hacarlioglu and S. T. Oyama, Chem. Eng. J., 166, 401 (2011). https://doi.org/10.1016/j.cej.2010.10.060
  11. A. Shariati and C. J. Peters, J. Supercrit. Fluids, 30, 139 (2004). https://doi.org/10.1016/j.supflu.2003.09.001
  12. S. N.V. K. Aki, B. R. Mellein, E. M. Saurer and J. F. Brennecke, J. Phys. Chem. B, 108, 20355 (2004). https://doi.org/10.1021/jp046895+
  13. M. Kroon, A. Shariati, M. Costantini, J. van Spronsen, G.-J. Witkamp, R.A. Sheldon and C. J. Peters, J. Chem. Eng. Data, 50, 173 (2005). https://doi.org/10.1021/je049753h
  14. D.-J. Oh and B.-C. Lee, Korean J. Chem. Eng., 23, 800 (2006). https://doi.org/10.1007/BF02705931
  15. J. L. Anderson, J. K. Dixon and J. F. Brennecke, Acc. Chem. Res., 40, 1208 (2007). https://doi.org/10.1021/ar7001649
  16. E.-K. Shin, B.-C. Lee and J. S. Lim, J. Supercrit. Fluids, 45, 282 (2008). https://doi.org/10.1016/j.supflu.2008.01.020
  17. E.-K. Shin and B.-C. Lee, J. Chem. Eng. Data, 53, 2728 (2008). https://doi.org/10.1021/je8000443
  18. B.-H. Lim, W.-H. Choe, J.-J. Shim, C. S. Ra, D. Tuma, H. Lee and C. S. Lee, Korean J. Chem. Eng., 26, 1130 (2009). https://doi.org/10.1007/s11814-009-0188-5
  19. P. J. Carvalho, V.H. Alvarez, I.M. Marrucho, M. Aznar and J. A. P. Coutinho, J. Supercrit. Fluids, 52, 258 (2010). https://doi.org/10.1016/j.supflu.2010.02.002
  20. J.-H. Yim, H. N. Song, B.-C. Lee and J. S. Lim, Fluid Phase Equilib., 308, 147 (2011). https://doi.org/10.1016/j.fluid.2011.06.023
  21. J.-H. Yim, H. N. Song, K. P. Yoo and J. S. Lim, J. Chem. Eng. Data, 56, 1197 (2011). https://doi.org/10.1021/je101100d
  22. Y. R. Jin, Y. H. Jung, S. J. Park and I. H. Baek, Korean Chem. Eng. Res., 50, 35 (2012). https://doi.org/10.9713/kcer.2012.50.1.035
  23. D. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  24. M.B. Shiflett, D.W. Drew, R.A. Cantini and A. Yokozeki, Energy Fuels, 24, 5781 (2010). https://doi.org/10.1021/ef100868a
  25. Guide to the expression of uncertainty in measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).
  26. J.M. Lee, B.-C. Lee and S.-H. Lee, J. Chem. Eng. Data, 45, 851 (2000). https://doi.org/10.1021/je9903350
  27. J.M. Prausnitz, R.N. Lichtenthaler and E.G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3rd Ed., Prentice-Hall, NJ, USA (1999).
  28. J. O. Valderrama and R. E. Rojas, Ind. Eng. Chem. Res., 48, 6890 (2009). https://doi.org/10.1021/ie900250g
  29. R. E. Baltus, B.H. Culbertson, S. Dai, H. Luo and D.W. DePaoli, J. Phys. Chem. B, 108, 721 (2004).

Cited by

  1. Solubility of carbon dioxide in ammonium based CO2-induced ionic liquids vol.354, pp.None, 2013, https://doi.org/10.1016/j.fluid.2013.06.011
  2. 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도 vol.27, pp.2, 2014, https://doi.org/10.5806/ast.2014.27.2.79
  3. A New QSPR Model for Predicting the Densities of Ionic Liquids vol.39, pp.9, 2013, https://doi.org/10.1007/s13369-014-1223-3
  4. Porous Solids Impregnated with Task-Specific Ionic Liquids as Composite Sorbents vol.119, pp.35, 2015, https://doi.org/10.1021/acs.jpcc.5b04646
  5. 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate와 1-Butyl-1-methylpyrrolidinium trifluoromethanesulfonate 이온성 액체에 대한 황화수소와 메탄의 용해도 vol.54, pp.2, 2016, https://doi.org/10.9713/kcer.2016.54.2.213
  6. Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.230
  7. Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar vol.62, pp.4, 2013, https://doi.org/10.1021/acs.jced.6b00833