Quality Characteristics of Microencapsulated $\beta$-carotene Prepared by Different Molecular Weight Chitosan

키토산 분자량에 따른 $\beta$-carotene의 미세캡슐화 및 품질특성

  • Park, Hye-Mi (Department of Food Science and Technology, Catholic University of Daegu) ;
  • No, Hong Kyoon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Yoon, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 박혜미 (대구가톨릭대학교 식품공학전공) ;
  • 노홍균 (대구가톨릭대학교 식품공학전공) ;
  • 이신호 (대구가톨릭대학교 식품공학전공) ;
  • 윤광섭 (대구가톨릭대학교 식품공학전공) ;
  • 박창수 (대구가톨릭대학교 식품공학전공) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Published : 2013.03.31

Abstract

We investigated quality characteristics of microencapsulated $\beta$-carotene prepared by different molecular weight chitosan (8 kDa, 43 kDa, and 67 kDa), cyclodextrin, and maltodextrin. As the chitosan content and molecular weight increased, viscosity were increased. pH was decreased as the chitosan molecular weight increased. The particle size and form of microencapsulated $\beta$-carotene were $26.55{\sim}109.8{\mu}m$ and generally globular form. The microencapsulrated $\beta$-carotene that were stored for 5 weeks at room temperature presented L value and a value were decreased and b value was increased. When the light is blocked, the stability was maintained. As the chitosan molecular weight increased, $\beta$-carotene content maintain stability. The 67 kDa chitosan with a higher molecular weight is anticipated to be a widely utilized wall material in the functional food industries.

기능성 소재로 산업적으로 이용되고 있는 키토산을 고부가가치 기능성식품의 피복물질로의 활용가능성을 확인하기 위하여 핵물질로 $\beta$-carotene을 사용하여 미세캡슐화하였으며 저장기간에 따른 품질 안정성을 조사하였다. 키토산의 점도는 분자량 및 농도가 증가함에 따라 증가하였으며 pH값은 분자량이 증가함에 따라 낮아짐을 알 수 있었다. 분무건조 분말의 평균 입자크기는 $26.55{\sim}109.8{\mu}m$이였고, 분자량이 증가함에 따라 증가하였으며, 입자모양은 전반적으로 구형의 모양을 보여주어 분말 흐름성이 양호할 것으로 사료된다. 저장안정성을 확인하기 위하여 5주간 상온에서 알루미늄 호일로 포장한 구간과 미포장한 구간에서의 색도 및 $\beta$-carotene 함량을 분석한 결과, 저장기간에 따라 L값 및 a값은 전반적으로 감소하였고 b값은 증가하였다. 키토산의 분자량이 증가할수록 L값 및 a값의 감소율은 낮았으며 CD 및 MD와 유사한 감소율을 보여주었다. 저장기간에 따른 미세캡슐 분말의 $\beta$-carotene 함량 변화는 키토산 분자량이 증가할수록 감소율이 낮았는데, 67 kDa가 저장안정성이 가장 우수하였으며 저분자 키토산인 8 kDa 또한 CD와 MD와 유사한 감소율을 보여주었다. 저장조건에 따른 $\beta$-carotene 함량은 알루미늄 호일 포장한 구간이 미포장한 구간에 비해 높았으며 알루미늄 호일로 포장된 67 kDa 구간이 CD 및 MD에 비해 3배 가량 높음을 확인하였다. 따라서 키토산은 미세캡슐용 피복물질로서의 우수한 저장안정성을 가짐을 확인하였으며 향후 다양한 기능성식품개발에 활용 가능할 것이다.

Keywords

References

  1. Hong, J.H., Lee, Y.W. and Choi, Y. H.: Microencapsulation of $\beta$-carotene by spray drying process. J. Food Engineering Progress, 2004, 8(4), 249-254.
  2. Jo, J.O. and Jung, I.C.: Changes in carotenoid contents of several green-yellow vegetables by blanching. Korean J. Soc. Food Sci. 2000, 16(1), 17-21.
  3. Hong, S.P., Hwang, J.K. and Kim, D.S.: Functional properties of chitin/chitosan and production technology of chitooligosaccharide. Korean J. Food Sci. Technol. 1997, 40, 44-53.
  4. Hwang, Y.H. and Jung, D.C.: A study on the preparation of chitin/chitosan using protunus trituberculatus shells such as crustacea. J. Korean oil Chemists' Soc. 1998, 15(1), 35-45.
  5. Park, S.H., Ko, Y.J. and Kim, K.S.: Physiological functions of chitosans as functional food ingredients. J. Chitin Chitosan, 2005, 10(2), 55-60.
  6. Hirayama, F. and Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 1999, 46, 125-141.
  7. Shahi, F.S. and Han, X.: Encapsulatron of food ingredients. CRC Cri. Rev. in Food Sci. Nutr. 1993, 33(6), 501-547. https://doi.org/10.1080/10408399309527645
  8. Reineccius, G.A.: Controlled release techniques in the food industry. Risch SJ and Reineccius GA, Encapsulation and controlled release of food ingredients. ACS Symp. Ser. 1995, 590, 8-25.
  9. Kim, D.M. and Kwak, H.S.: Nanofood materials and approachable development of nanofunctional dairy products. Korean J. Food Sci. Technol. 2004, 22, 1-12.
  10. Han, M.W. and Yoon, K.S.: Quality characteristics of spray drying microparticulated calcium after wet-grinding. Korean J. Food Sci. Technol. 2009, 41(6), 657-661.
  11. Song, J.Y., Kim, Y.C. and Shin M.S.: Textural properies and structures of wheat and maize starch-gum mixed gels during storage. Food Sci. Biotechnol. 2008, 17, 20-25.
  12. Wagner, J.A. and Warthesen, J.J.: Stability of spray-dried encapsulated carrot carotene. J. Food Sci. 1995, 60, 1048-1053. https://doi.org/10.1111/j.1365-2621.1995.tb06290.x
  13. Sankarikutty, B., Sreekumar, M.M., Narayanan, C.S. and Mathew, G.: Studies on microencapsulation of cardamom oil by spray drying technique. J. Food Sci. Tech. Mys. 1988, 25, 352-356.
  14. Masters, K.: Spray drying handbook. pp. 112-125. Longman Sci. & Tech., New York, USA (1999).
  15. Lee, S.C., Rhim, C.H. and Lee, S.C.: Charateristics of spray dried polysaccharides for microencapsulation. Korean J. Food Sci. Technol. 1997, 29, 1322-1326.
  16. Risch, S.J. and Reineccius, G.A.: Spray-dried orange oil-effect of emulsion size on flavor retention and shelf stability. In Flavor Encapsulation: ACS Symposium Series No. 370, pp. 66-77. American Chemical Society, Washington, DC, USA (1988).
  17. Lee, K.W.: Studies on the microencapsulation of lactic acid bacteria and their survival. Ph D. Seoul University. (1998).
  18. Lee, M.H. and No, H.K.: Effect of chitosan on shelf-life and quality of buckwheat starch jelly. J. Korean Soc. Nutr. 2001, 30, 865-869.
  19. Park, G.S. and Park, E.J.: Quality characteristics of korean traditional fried cookie (maejakgwa) prepared with chitosan during storage. J. Chitin Chitosan, 2011, 16(4), 254-261.
  20. Lee, M.H. and No, H.K.: Effect of chitosan on shelf-life and quality of wet noodle. J. Chitin Chitosan, 2002, 7, 14-17.