Study on developing characteristics of the Quaternary Gusan Fault in Uljin, Gyeongbuk, Korea

경북 울진군에 발달하는 제4기 구산단층의 발달특성 연구

  • Jin, Kwangmin (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Young-Seog (Department of Earth Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Kang, Hee Cheol (Department of Earth Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Shin, Hyeon Cho (Civil & Architecture Engineering Department, KEPCO Engineering & Construction Company, Inc.)
  • 진광민 (한국지질자원연구원 광물자원연구본부) ;
  • 김영석 (부경대학교 지구환경과학과) ;
  • 강희철 (부경대학교 지구환경과학과) ;
  • 신현조 (한국전력기술(주) 토목건축기술그룹)
  • Published : 2013.04.30

Abstract

The Gusan Fault cuts the Quaternary fluvial deposits as well as Precambrian leucocratic granite gneiss. Slickenlines on the surface of the Gusan Fault indicate dominantly strike-slip movement sense. Age dating results on the Quaternary fluvial deposits and fault gouges of the Gusan Fault demonstrate that the Gusan Fault might be activated at least two times within 500 ka B.P. Based on the trench survey across the fault on the Quaternary fluvial deposits, covering the basement, aligned long axes of pebbles cutting the Quaternary fluvial deposits indicate that the Gusan Fault was activated by strike-slip movement after the development of the Quaternary fluvial deposits. The inferred slip associated with the Quaternary fault movement, based on a suggested relationship between true displacement and apparent displacement, is about 94.63 cm. Based on the inferred true displacement, the inferred moment magnitude ($M_w$) associated with the slip along the fault is in a range of 6.4-6.9, if it is supposed as one event.

최근 울진에서 발견된 구산단층은 선캠브리아시대의 우백질 화강편마암과 이를 피복한 제4기 하성층을 절단하며 발달한다. 단층면에서 관찰되는 단층조선의 특성은 구산단층이 주향이동운동이 우세한 단층임을 지시한다. 구산단층 상부를 피복하고 있는 제4기 하성층에 대한 트렌치 조사에서 제4기 하성층에 포함된 역들이 정향배열을 보이고 있어 구산단층은 제4기 하성층이 퇴적된 이후에도 단층활동을 한 제4기 단층으로 해석된다. 정확한 활동시기를 추정하기 위해 제4기 하성층과 단층비지에 대해 실시한 연대측정 결과 구산단층은 50만년 이내에 2번 이상 활동했던 단층으로 해석되었다. 기존 연구자에 의해 제시된 실제 변위와 겉보기 변위와의 상관관계를 이용한 구산단층의 추정변위는 약 94.63 cm 이다. 그리고 만약 보수적으로 해석하여 이 변위를 한 번의 지진활동에 의한 변위로 가정할 때 구산단층에서의 이 단층운동에 수반된 모멘트 지진규모는 약 6.4-6.9로 추정될 수 있다.

Keywords

References

  1. Ambraseys, N.N., 1973, Earth sciences in archaeology and history. Antiquity, 47, 229-230. https://doi.org/10.1017/S0003598X00103941
  2. Ambraseys, N.N., 2006, Earthquakes and archaeology. Journal of Archaeological Science, 33, 1008-1016. https://doi.org/10.1016/j.jas.2005.11.006
  3. Caputo, R. and Helly, B., 2005, Archaeological evidences of past earthquakes: a contribution to the Sha of Thessaly, central Greece. Journal of Earthquakes Engineering, 9, 199-222.
  4. Choi, P.-Y., 2005, Geometric Analysis of the Quaternary Eupchon Fault: an Interpretation of Trench Sections. Journal of the Geological Society of Korea, 41, 129-140 (in Korean with English abstract).
  5. Choi, S.-J., Hong, D.-G., Chwae, U., Song, Y.G., Kim, C. and Shim, T., 2010, Retrodeformation analysis of the Quaternary fault in the southeastern Korean Peninsula. Gondwana Research, 17, 116-124. https://doi.org/10.1016/j.gr.2009.07.008
  6. Chwae, U., Lee, D.-Y., Lee, B.-J., Ryoo, C.-R., Choi, P.-Y., Choi, S.-J., Cho, D.-R., Kim, J.-Y., Lee, C.-B., Kee, W.-S., Yang, D.-Y., Kim, I.-J., Kim, Y.-S., Yoo, J.-H., Chae, B.-G., Kim, W.-Y., Kang, P.-J., Yoo, I.-H. and Lee, H.-K., 1998, An Investigation and Evaluation of Capable Fault: Southeastern Part of the Korean Peninsula 301 p (in Korean with English abstract).
  7. Fukushima, Y., Irikura, K., Uetake, T. and Matsumoto, H., 2000, Characteristics of observed peak amplitude for strong ground motion from the 1995 Hyogoken nanbu (Kobe) earthquake, Bulletin of the Seismological Society of America, 90, 545-565. https://doi.org/10.1785/0119990066
  8. Hyndman, D. and Hyndman, D., 2006, Natural Hazards and disasters. Thomson Brooks/Cole, Belmont, 490 p.
  9. Jeong, G.Y. and Cheong, C.-S., 2005, Recurrent events on a Quaternary fault recorded in the mineralogy and micromorphology of a weathering profile, Yangsan Fault System, Korea. Quaternary Research, 64, 221-233. https://doi.org/10.1016/j.yqres.2005.05.008
  10. Jin, K., Kim, Y.-S. and Shin, H.C., 2010, Neotectonics of the Uljin area in Gyeongbuk. 2010 Fall Joint Annual Conference of The Geological Societies in Korea (Abstract), Gyeongju, October 27-30, 57 p (in Korean).
  11. Kagan, E.J., Agnon, A., Bar-Matthews, M. and Ayalon, A., 2005, Dating large infrequent earthquakes by damaged cave deposits. Geology, 33, 261-264. https://doi.org/10.1130/G21193.1
  12. Kanamori, H., 1977, The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981-2987. https://doi.org/10.1029/JB082i020p02981
  13. Kee, W.-S., Kihm, Y.H., Lee, H., Cho, D.L., Kim, B.C., Song, K.-Y., Koh, H.J., Lee, S.R., Yeon, Y.-K., Hwang, S., Park, K,G. and Seong, N.-H., 2009, Evaluation and database construction of Quaternary faults in SE Korea. Korea Institute of Geoscience and Mineral Resources, IP2006-047-2009(1), 327 p (in Korean).
  14. Kim, Y.-S. and Jin, K., 2006, Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, 42, 79-94.
  15. Kim, Y.-S., Kihm, J.-H. and Jin, K., 2011, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea. Journal of the Geological Society, London, 168, 273-288. https://doi.org/10.1144/0016-76492010-088
  16. Kim, Y.-S. and Park, J.-Y., 2006, Cenozoic deformation history of the area around Yangnam-Yangbuk, SE Korea and its tectonic significance. Journal of Asian Earth Sciences, 26, 1-20. https://doi.org/10.1016/j.jseaes.2004.08.008
  17. Kim, Y.-S., Park, J.-Y., Kim, J.H., Shin, H.C. and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupcheon Fault, southeast Korea. The Island Arc, 13, 403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  18. Kim, Y.-S. and Sanderson, D.J., 2010, Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves. Journal of Structural Geology 32, 1305-1316. https://doi.org/10.1016/j.jsg.2009.04.017
  19. Korea Power Engineering Company (KOPEC), 2008, The Preliminary Site Assessment Report (PSAR) for the new Uljin Reactors 1 and 2, Unpublished Report. KOPEC, Yongin.
  20. Kyung, J.-B. and Chang, T.W., 2001, The Latest Fault Movement on the Northern Yangsan Fault Zone around the Yugye-Ri Area, Southeast Korea. Journal of the Geological Society of Korea, 37, 563-577 (in Korean with English abstract).
  21. Kyung, J.-B., Lee, K., Okada, A., Watanabe, M., Suzuki, Y. and Takemura, K., 1999, Study of Fault Characteristics by Trench Survey in the Sangchon-ri Area in the Southern Part of Yangsan Fault, Southeastern Korea. Jour. Korean Earth Science Society, 20, 101-110 (in Korean with English abstract).
  22. Lee, B.J., Ryoo, C.-R. and Chwae, U., 1999, Quaternary Faults in the Yangnam area, Kyeongju, Korea. Journal of the Geological Society of Korea, 35, 1-14 (in Korean with English abstract).
  23. Lee, J.C., Chu, H.-T., Angelier, J., Chan, Y.-C., Hu, J.-C., Lu, C.-Y. and Rau, R.-J., 2002, Geometry and structure of northern surface ruptures of the 1999 Mw=7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures. Journal of Structural Geology, 24, 173-192. https://doi.org/10.1016/S0191-8141(01)00056-6
  24. Lee, Y.-H., Hsieh, M.-L., Lu, S.-D., Shih, T.-S., Wu, W.-Y., Sugiyama, Y., Azuma, T. and Kariya, Y., 2003, Slip vectors of the surface rupture of the 1999 Chi-Chi earthquake, western Taiwan. Journal of Structural Geology, 25, 1917-1931. https://doi.org/10.1016/S0191-8141(03)00039-7
  25. McCalpin, J.P., 1996, Paleoseismology. Academic Press, SanDiego, 588 p.
  26. McGarr, A. and Fletcher, J.B., 2002, Mapping apparent stress and energy radiation over fault zones of major earthquakes. Bulletin of the Seismological Society of America, 92, 1633-1646. https://doi.org/10.1785/0120010129
  27. Michetti, A.M., Audemard, F.A. and Marco, S., 2005, Future trends in paleoseismology: Integrated study of the seismic landscape as a vital tool in seismic hazard analyses. Tectonophysics, 408, 3-21. https://doi.org/10.1016/j.tecto.2005.05.035
  28. Olson, E.L. and Allen, R.M., 2005, The deterministric nature of earthquake rupture. Nature, 438, 212-215. https://doi.org/10.1038/nature04214
  29. Ota, Y., Chen, Y.-G. and Chen, W.-S., 2005, Review of paleoseismological and active fault studies in Taiwan in the light of the Chichi earthquake of September 21, 1999. Tectonophysics, 208, 63-77.
  30. Ree, J.-H., Lee, Y.-J., Rhodes, Ed.J., Park, Y., Kwon, S.-T, Chwae, U., Jeon, J.-S. and Lee, B., 2003, Quaternary reactivation of Tertiary faults in the southeatern Korean Peninsula: Age constraint by optically stimulated luminescence dating. Island Arc, 12, 1-12. https://doi.org/10.1046/j.1440-1738.2003.00372.x
  31. Steven, M.D., Guang, Y. and David, J.W., 1998, Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88, 512-522.
  32. Sugawara, D., Goto, K., Chague-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nichimura, Y., Richmond, B., Szczucinski, W., Tappin, D.R., Witter, R. and Ylianto, E., 2011, Initial field survey report of the 2011 East Japan Tsunami in Sendai, Natori and Iwanuma Cities. UNESCO-Ioc Internation Tsunami Survey Team, 16 p.
  33. Twiss, R.J. and Moores, E.M., 2007, Structural Geology (2nd edition). W.H. Freeman and Company, New York, 736 p.
  34. Wells, D.L. and Coppersmith, K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of Seismological Society of America, 84, 974-1002.
  35. Xu, S., Nieto-Samaniego, A.F. and Alaniz-Alvarez, S.A., 2009, Quantification of true displacement using apparent displacement along an arbitrary line on a fault plane. Tectonophysics, 467, 107-118. https://doi.org/10.1016/j.tecto.2008.12.004
  36. Yount, J.C., Shroba, R.R., McMasters, C.R., Huckins, H.E. and Rodriguez, E.A., 1987, Trench logs from a stand of the Rock Valley fault system, Nevada Test Site, Nye County, Nevada. U. S. Geol. Surv. Misc. Field Stud. Map MF-1824, Scale 1:20.
  37. Yun, S.K. and Shin, B.W., 1963, Geological report of the Uljin sheet (1:50,000). Geological Survey of Korea, 1-23 pp (in Korean with English abstract).