DOI QR코드

DOI QR Code

The Intestinal Microbiota and Human Disease

장내 미생물총과 인간의 질병

  • Ko, Jae Sung (Department of Pediatrics, Seoul National University College of Medicine)
  • 고재성 (서울대학교 의과대학 소아과학교실)
  • Published : 2013.08.25

Abstract

Advances in sequencing technology and the development of metagenomics have opened up new ways to investigate the microorganisms inhabiting the human gut. The intestinal microbiota confer protection against pathogens, contribute to the maturation of the immune system, and regulate host metabolism. The composition of gut microbiota in early life is influenced by mode of birth, diet, and antibiotics. Decreased biodiversity and alterations in the composition of the intestinal microbiota have been observed in many diseases including obesity, neonatal necrotizing enterocolitis, inflammatory bowel disease, and recurrent Clostridium difficile infection. Therapeutic options for the diseases linked to imbalance in the microbiota include modifying the gut microbiota through diet, probiotics, and fecal transplants.

Keywords

References

  1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837-848. https://doi.org/10.1016/j.cell.2006.02.017
  2. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
  3. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 2004;134:465-472. https://doi.org/10.1093/jn/134.2.465
  4. Weinstock GM. Genomic approaches to studying the human microbiota. Nature 2012;489:250-256. https://doi.org/10.1038/nature11553
  5. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. https://doi.org/10.1038/nature08821
  6. Nelson KE, Weinstock GM, Highlander SK, et al; Human Microbiome Jumpstart Reference Strains Consortium. A catalog of reference genomes from the human microbiome. Science 2010;328:994-999. https://doi.org/10.1126/science.1183605
  7. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-214. https://doi.org/10.1038/nature11234
  8. Turnbaugh PJ, Quince C, Faith JJ, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 2010;107:7503-7508. https://doi.org/10.1073/pnas.1002355107
  9. Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 2011;6:e22109. https://doi.org/10.1371/journal.pone.0022109
  10. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-180. https://doi.org/10.1038/nature09944
  11. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108. https://doi.org/10.1126/science.1208344
  12. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691-14696. https://doi.org/10.1073/pnas.1005963107
  13. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908-912. https://doi.org/10.1038/nature08937
  14. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-11975. https://doi.org/10.1073/pnas.1002601107
  15. Schwartz S, Friedberg I, Ivanov IV, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 2012;13:r32. https://doi.org/10.1186/gb-2012-13-4-r32
  16. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011;108(Suppl 1):4578-4585. https://doi.org/10.1073/pnas.1000081107
  17. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123. https://doi.org/10.1186/1471-2180-9-123
  18. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005;308:1635-1638. https://doi.org/10.1126/science.1110591
  19. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-11075. https://doi.org/10.1073/pnas.0504978102
  20. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3:213-223. https://doi.org/10.1016/j.chom.2008.02.015
  21. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031. https://doi.org/10.1038/nature05414
  22. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-1023. https://doi.org/10.1038/4441022a
  23. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009;587:4153-4158. https://doi.org/10.1113/jphysiol.2009.174136
  24. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010;18:190-195. https://doi.org/10.1038/oby.2009.167
  25. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011;94:58-65. https://doi.org/10.3945/ajcn.110.010132
  26. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009;106:2365-2370. https://doi.org/10.1073/pnas.0812600106
  27. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-1772. https://doi.org/10.2337/db06-1491
  28. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007;56:1986-1998. https://doi.org/10.2337/db06-1595
  29. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228-231. https://doi.org/10.1126/science.1179721
  30. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-1103. https://doi.org/10.1136/gut.2008.165886
  31. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-916. https://doi.org/10.1053/j.gastro.2012.06.031
  32. Wagnerberger S, Spruss A, Kanuri G, et al. Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 2012;107:1727-1738. https://doi.org/10.1017/S0007114511004983
  33. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012;482:179-185. https://doi.org/10.1038/nature10809
  34. Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic Fatty liver disease. Clin Gastroenterol Hepatol 2013;11:868-875. https://doi.org/10.1016/j.cgh.2013.02.015
  35. Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013;57:601-609. https://doi.org/10.1002/hep.26093
  36. Chang JY, Shin SM, Chun J, Lee JH, Seo JK. Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. J Pediatr Gastroenterol Nutr 2011;53:512-519.
  37. Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 2009;3:944-954. https://doi.org/10.1038/ismej.2009.37
  38. Mai V, Young CM, Ukhanova M, et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One 2011;6:e20647. https://doi.org/10.1371/journal.pone.0020647
  39. Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr 2010;156:20-25. https://doi.org/10.1016/j.jpeds.2009.06.063
  40. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011;5:82-91. https://doi.org/10.1038/ismej.2010.92
  41. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012;129:434-440. https://doi.org/10.1016/j.jaci.2011.10.025
  42. Round JL, Lee SM, Li J, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332:974-977. https://doi.org/10.1126/science.1206095
  43. Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic- driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-447. https://doi.org/10.1038/embor.2012.32
  44. Rajilić-Stojanović M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011;141:1792-1801. https://doi.org/10.1053/j.gastro.2011.07.043
  45. Jeffery IB, O'Toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 2012;61:997-1006. https://doi.org/10.1136/gutjnl-2011-301501
  46. Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 2011;141:1782-1791. https://doi.org/10.1053/j.gastro.2011.06.072
  47. Ohman L, Simrén M. Intestinal microbiota and its role in irritable bowel syndrome (IBS). Curr Gastroenterol Rep 2013;15:323. https://doi.org/10.1007/s11894-013-0323-7
  48. Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 2012;107:1452-1459. https://doi.org/10.1038/ajg.2012.93
  49. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010;105:2687-2692. https://doi.org/10.1038/ajg.2010.398
  50. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007;104:13780-13785. https://doi.org/10.1073/pnas.0706625104
  51. Walker AW, Sanderson JD, Churcher C, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 2011;11:7. https://doi.org/10.1186/1471-2180-11-7
  52. Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010;139:1844-1854. https://doi.org/10.1053/j.gastro.2010.08.049
  53. Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011;60:1354-1362. https://doi.org/10.1136/gut.2010.216259
  54. Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011;17:179-184. https://doi.org/10.1002/ibd.21339
  55. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79. https://doi.org/10.1186/gb-2012-13-9-r79
  56. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108(Suppl 1):4554-4561. https://doi.org/10.1073/pnas.1000087107
  57. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007;1:56-66. https://doi.org/10.1038/ismej.2007.3
  58. Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012;55:905-914. https://doi.org/10.1093/cid/cis580
  59. Ubeda C, Taur Y, Jenq RR, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010;120:4332-4341. https://doi.org/10.1172/JCI43918
  60. Chang JY, Antonopoulos DA, Kalra A, et al. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 2008;197:435-438. https://doi.org/10.1086/525047
  61. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 2010;44:354-360.
  62. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-415. https://doi.org/10.1056/NEJMoa1205037
  63. Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 2012;4:137rv7.

Cited by

  1. Roles of Enteric Microbial Composition and Metabolism in Health and Diseases vol.62, pp.4, 2013, https://doi.org/10.4166/kjg.2013.62.4.191
  2. Aspergillus oryzae로 발효한 자색당근을 첨가한 발효유의 품질 및 관능 특성에 관한 연구 vol.30, pp.3, 2015, https://doi.org/10.7318/kjfc/2015.30.3.370
  3. Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota vol.27, pp.6, 2018, https://doi.org/10.1007/s10068-018-0420-3
  4. 체질분석 방법에 따른 BMI 특성 및 태음인과 소음인의 음식선호도 vol.33, pp.6, 2013, https://doi.org/10.7318/kjfc/2018.33.6.512
  5. Thyroid and Gut Microbiome vol.14, pp.2, 2013, https://doi.org/10.11106/ijt.2021.14.2.117