DOI QR코드

DOI QR Code

Immunopathogenesis of Allergic Asthma: More Than the Th2 Hypothesis

  • Kim, You-Me (Department of Life Science, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, You-Sun (Department of Life Science, Pohang University of Science and Technology (POSTECH)) ;
  • Jeon, Seong Gyu (Department of Life Science, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Yoon-Keun (Department of Life Science, Pohang University of Science and Technology (POSTECH))
  • Published : 2013.07.01

Abstract

Asthma is a chronic obstructive airway disease that involves inflammation of the respiratory tract. Biological contaminants in indoor air can induce innate and adaptive immune responses and inflammation, resulting in asthma pathology. Epidemiologic surveys indicate that the prevalence of asthma is higher in developed countries than in developing countries. The prevalence of asthma in Korea has increased during the last several decades. This increase may be related to changes in housing styles, which result in increased levels of indoor biological contaminants, such as house dust mite-derived allergens and bacterial products such as endotoxin. Different types of inflammation are observed in those suffering from mild-to-moderate asthma compared to those experiencing severe asthma, involving markedly different patterns of inflammatory cells and mediators. As described in this review, these inflammatory profiles are largely determined by the involvement of different T helper cell subsets, which orchestrate the recruitment and activation of inflammatory cells. It is becoming clear that T helper cells other than Th2 cells are involved in the pathogenesis of asthma; specifically, both Th1 and Th17 cells are crucial for the development of neutrophilic inflammation in the airways, which is related to corticosteroid resistance. Development of therapeutics that suppress these immune and inflammatory cells may provide useful asthma treatments in the future.

Keywords

References

  1. Agostinis F, Foglia C, Landi M, Cottini M, Lombardi C, Canonica GW, Passalacqua G. The safety of sublingual immunotherapy with one or multiple pollen allergens in children. Allergy 2008;63:1637-9. https://doi.org/10.1111/j.1398-9995.2008.01742.x
  2. Manniche L, Forman W. Sacred luxuries: fragrance, aromatherapy, and cosmetics in Ancient Egypt. New York, NY: Cornell University Press; 1999.
  3. Opolski M, Wilson I. Asthma and depression: a pragmatic review of the literature and recommendations for future research. Clin Pract Epidemiol Ment Health 2005;1:18. https://doi.org/10.1186/1745-0179-1-18
  4. Louis R, Lau LC, Bron AO, Roldaan AC, Radermecker M, Djukanovic R. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 2000;161:9-16. https://doi.org/10.1164/ajrccm.161.1.9802048
  5. Vrugt B, Wilson S, Underwood J, Bron A, de Bruyn R, Bradding P, Holgate ST, Djukanovic R, Aalbers R. Mucosal inflammation in severe glucocorticoid-dependent asthma. Eur Respir J 1999;13:1245-52. https://doi.org/10.1183/09031936.99.13612539
  6. Fanta CH. Asthma. N Engl J Med 2009;360:1002-14. https://doi.org/10.1056/NEJMra0804579
  7. Braman SS. The global burden of asthma. Chest 2006;130:4S-12S. https://doi.org/10.1378/chest.130.1_suppl.4S
  8. Kroegel C. Global Initiative for Asthma (GINA) guidelines: 15 years of application. Expert Rev Clin Immunol 2009;5:239-49. https://doi.org/10.1586/eci.09.1
  9. Lazarus SC. Clinical practice. Emergency treatment of asthma. N Engl J Med 2010;363:755-64. https://doi.org/10.1056/NEJMcp1003469
  10. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998;351:1225-32. https://doi.org/10.1016/S0140-6736(97)07302-9
  11. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, Pizzichini E, Sullivan SD, Wenzel SE, Zar HJ. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 2008; 31:143-78. https://doi.org/10.1183/09031936.00138707
  12. Denlinger LC, Sorkness CA, Chinchilli VM, Lemanske RF Jr. Guideline-defining asthma clinical trials of the National Heart, Lung, and Blood Institute's Asthma Clinical Research Network and Childhood Asthma Research and Education Network. J Allergy Clin Immunol 2007;119:3-11; quiz 12-3. https://doi.org/10.1016/j.jaci.2006.10.015
  13. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D'Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER; National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010;181:315-23. https://doi.org/10.1164/rccm.200906-0896OC
  14. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. Interleukin-13: central mediator of allergic asthma. Science 1998;282:2258-61. https://doi.org/10.1126/science.282.5397.2258
  15. Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergy in the development of asthma. Nature 1999;402:B12-7.
  16. Savelkoul HF, Seymour BW, Sullivan L, Coffman RL. IL-4 can correct defective IgE production in SJA/9 mice. J Immunol 1991;146: 1801-5.
  17. Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 1990;172:1425-31. https://doi.org/10.1084/jem.172.5.1425
  18. Iwamoto I, Nakajima H, Endo H, Yoshida S. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med 1993; 177:573-6. https://doi.org/10.1084/jem.177.2.573
  19. Lack G, Bradley KL, Hamelmann E, Renz H, Loader J, Leung DY, Larsen G, Gelfand EW. Nebulized IFN-gamma inhibits the development of secondary allergic responses in mice. J Immunol 1996; 157:1432-9.
  20. Turner MO, Hussack P, Sears MR, Dolovich J, Hargreave FE. Exacerbations of asthma without sputum eosinophilia. Thorax 1995;50: 1057-61. https://doi.org/10.1136/thx.50.10.1057
  21. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160:1001-8. https://doi.org/10.1164/ajrccm.160.3.9812110
  22. Marguet C, Jouen-Boedes F, Dean TP, Warner JO. Bronchoalveolar cell profiles in children with asthma, infantile wheeze, chronic cough, or cystic fibrosis. Am J Respir Crit Care Med 1999;159:1533-40. https://doi.org/10.1164/ajrccm.159.5.9805028
  23. Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001;119:1329-36. https://doi.org/10.1378/chest.119.5.1329
  24. Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002;57:875-9. https://doi.org/10.1136/thorax.57.10.875
  25. Wanner A, Abraham WM, Douglas JS, Drazen JM, Richerson HB, Ram JS. NHLBI Workshop Summary. Models of airway hyperresponsiveness. Am Rev Respir Dis 1990;141:253-7. https://doi.org/10.1164/ajrccm/141.1.253
  26. Turner DJ, Myron P, Powell WS, Martin JG. The role of endogenous corticosterone in the late-phase response to allergen challenge in the brown Norway rat. Am J Respir Crit Care Med 1996;153:545-50. https://doi.org/10.1164/ajrccm.153.2.8564095
  27. Dybas JM, Andresen CJ, Schelegle ES, McCue RW, Callender NN, Jackson AC. Deep-breath frequency in bronchoconstricted monkeys (Macaca fascicularis). J Appl Physiol 2006;100:786-91. https://doi.org/10.1152/japplphysiol.01014.2004
  28. Marsh WR, Irvin CG, Murphy KR, Behrens BL, Larsen GL. Increases in airway reactivity to histamine and inflammatory cells in bronchoalveolar lavage after the late asthmatic response in an animal model. Am Rev Respir Dis 1985;131:875-9.
  29. Dunn CJ, Elliott GA, Oostveen JA, Richards IM. Development of a prolonged eosinophil-rich inflammatory leukocyte infiltration in the guinea-pig asthmatic response to ovalbumin inhalation. Am Rev Respir Dis 1988;137:541-7. https://doi.org/10.1164/ajrccm/137.3.541
  30. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348-57.
  31. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol 1997;15:749-95. https://doi.org/10.1146/annurev.immunol.15.1.749
  32. Kim YK, Oh SY, Jeon SG, Park HW, Lee SY, Chun EY, Bang B, Lee HS, Oh MH, Kim YS, Kim JH, Gho YS, Cho SH, Min KU, Kim YY, Zhu Z. Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J Immunol 2007;178: 5375-82. https://doi.org/10.4049/jimmunol.178.8.5375
  33. Kim YS, Hong SW, Choi JP, Shin TS, Moon HG, Choi EJ, Jeon SG, Oh SY, Gho YS, Zhu Z, Kim YK. Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways. J Immunol 2009;183:5113-20. https://doi.org/10.4049/jimmunol.0901566
  34. Tanaka T, Katada Y, Higa S, Fujiwara H, Wang W, Saeki Y, Ohshima S, Okuda Y, Suemura M, Kishimoto T. Enhancement of T helper2 response in the absence of interleukin (IL-)6; an inhibition of IL-4-mediated T helper2 cell differentiation by IL-6. Cytokine 2001;13: 193-201. https://doi.org/10.1006/cyto.2000.0828
  35. Greenfeder S, Umland SP, Cuss FM, Chapman RW, Egan RW. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respir Res 2001;2:71-9. https://doi.org/10.1186/rr41
  36. Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol 2001;108:594-601. https://doi.org/10.1067/mai.2001.118600
  37. Lukacs NW, Strieter RM, Chensue SW, Kunkel SL. Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol 1994;10:526-32. https://doi.org/10.1165/ajrcmb.10.5.8179915
  38. Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA, Doherty PC, Grosveld G, Paul WE, Ihle JN. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380:630-3. https://doi.org/10.1038/380630a0
  39. Fish SC, Donaldson DD, Goldman SJ, Williams CM, Kasaian MT. IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. J Immunol 2005;174:7716-24. https://doi.org/10.4049/jimmunol.174.12.7716
  40. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G, de Waal Malefyt R, de Vries JE. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A 1993;90:3730-4. https://doi.org/10.1073/pnas.90.8.3730
  41. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231-4. https://doi.org/10.1038/nature04754
  42. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009;27:485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
  43. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, Olivenstein R, Elias J, Chakir J. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001;108:430-8. https://doi.org/10.1067/mai.2001.117929
  44. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006; 203:2715-25. https://doi.org/10.1084/jem.20061401
  45. McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 2008;181:4089-97. https://doi.org/10.4049/jimmunol.181.6.4089
  46. Kawaguchi M, Kokubu F, Kuga H, Matsukura S, Hoshino H, Ieki K, Imai T, Adachi M, Huang SK. Modulation of bronchial epithelial cells by IL-17. J Allergy Clin Immunol 2001;108:804-9. https://doi.org/10.1067/mai.2001.119027
  47. Mould AW, Ramsay AJ, Matthaei KI, Young IG, Rothenberg ME, Foster PS. The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol 2000;164:2142-50. https://doi.org/10.4049/jimmunol.164.4.2142
  48. Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr, Shapiro SD, Elias JA. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000;192:1587-600. https://doi.org/10.1084/jem.192.11.1587
  49. Lee BJ, Moon HG, Shin TS, Jeon SG, Lee EY, Gho YS, Lee CG, Zhu Z, Elias JA, Kim YK. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma. Exp Mol Med 2011;43:169-78. https://doi.org/10.3858/emm.2011.43.4.018
  50. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001;194:809-21. https://doi.org/10.1084/jem.194.6.809
  51. Olenchock SA, May JJ, Pratt DS, Morey PR. Occupational exposures to airborne endotoxins in agriculture. Prog Clin Biol Res 1987;231: 475-87.
  52. Michel O, Ginanni R, Duchateau J, Vertongen F, Le Bon B, Sergysels R. Domestic endotoxin exposure and clinical severity of asthma. Clin Exp Allergy 1991;21:441-8. https://doi.org/10.1111/j.1365-2222.1991.tb01684.x
  53. Lipworth BJ, Jackson CM. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium. Drug Saf 2000;23:11-33. https://doi.org/10.2165/00002018-200023010-00002
  54. Holt PG. Parasites, atopy, and the hygiene hypothesis: resolution of a paradox? Lancet 2000;356:1699-701. https://doi.org/10.1016/S0140-6736(00)03198-6
  55. Voelker R. The hygiene hypothesis. JAMA 2000;283:1282. https://doi.org/10.1001/jama.283.10.1282
  56. Looringh van Beeck FA, Hoekstra H, Brunekreef B, Willemse T. Inverse association between endotoxin exposure and canine atopic dermatitis. Vet J 2011;190:215-9. https://doi.org/10.1016/j.tvjl.2010.10.027
  57. Illi S, von Mutius E, Lau S, Bergmann R, Niggemann B, Sommerfeld C, Wahn U; MAS Group. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ 2001;322:390-5. https://doi.org/10.1136/bmj.322.7283.390
  58. von Mutius E, Illi S, Hirsch T, Leupold W, Keil U, Weiland SK. Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children. Eur Respir J 1999;14:4-11. https://doi.org/10.1034/j.1399-3003.1999.14a03.x
  59. Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 2007;62:211-8. https://doi.org/10.1136/thx.2006.061358
  60. Hnizdo E. Lung function loss associated with occupational dust exposure in metal smelting. Am J Respir Crit Care Med 2010;181:1162-3. https://doi.org/10.1164/rccm.201002-0306ED
  61. Park JH, Gold DR, Spiegelman DL, Burge HA, Milton DK. House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med 2001;163:322-8. https://doi.org/10.1164/ajrccm.163.2.2002088
  62. Dosman JA, Fukushima Y, Senthilselvan A, Kirychuk SP, Lawson JA, Pahwa P, Cormier Y, Hurst T, Barber EM, Rhodes CS. Respiratory response to endotoxin and dust predicts evidence of inflammatory response in volunteers in a swine barn. Am J Ind Med 2006;49: 761-6. https://doi.org/10.1002/ajim.20339
  63. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002;196:1645-51. https://doi.org/10.1084/jem.20021340
  64. Gereda JE, Leung DY, Thatayatikom A, Streib JE, Price MR, Klinnert MD, Liu AH. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 2000;355:1680-3. https://doi.org/10.1016/S0140-6736(00)02239-X
  65. Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH, Berry G, DeKruyff RH, Umetsu DT. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2002;8:1024-32. https://doi.org/10.1038/nm745
  66. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996;4:313-9. https://doi.org/10.1016/S1074-7613(00)80439-2
  67. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J Immunol 2001;166:7276-81. https://doi.org/10.4049/jimmunol.166.12.7276
  68. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med 2002;8:567-73. https://doi.org/10.1038/nm0602-567
  69. Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999;17:255-81. https://doi.org/10.1146/annurev.immunol.17.1.255
  70. Gavett SH, O'Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 1995;182:1527-36. https://doi.org/10.1084/jem.182.5.1527
  71. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 2003;21:713-58. https://doi.org/10.1146/annurev.immunol.21.120601.140942
  72. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8:967-74. https://doi.org/10.1038/ni1488
  73. Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM, Dvorak HF. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993;12:303-24. https://doi.org/10.1007/BF00665960
  74. Lee YC, Lee HK. Vascular endothelial growth factor in patients with acute asthma. J Allergy Clin Immunol 2001;107:1106. https://doi.org/10.1067/mai.2001.115628
  75. Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 2001;107:295-301. https://doi.org/10.1067/mai.2001.111928
  76. Hahn RG. Endotoxin boosts the vascular endothelial growth factor (VEGF) in rabbits. J Endotoxin Res 2003;9:97-100. https://doi.org/10.1177/09680519030090020401
  77. Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, Kang MJ, Cohn L, Kim YK, McDonald DM, Elias JA. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004; 10:1095-103. https://doi.org/10.1038/nm1105
  78. Kim YS, Choi SJ, Tae YM, Lee BJ, Jeon SG, Oh SY, Gho YS, Zhu Z, Kim YK. Distinct roles of vascular endothelial growth factor receptor-1- and receptor-2-mediated signaling in T cell priming and Th17 polarization to lipopolysaccharide-containing allergens in the lung. J Immunol 2010;185:5648-55. https://doi.org/10.4049/jimmunol.1001713
  79. Thorne PS, Kulhankova K, Yin M, Cohn R, Arbes SJ Jr, Zeldin DC. Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am J Respir Crit Care Med 2005;172:1371-7. https://doi.org/10.1164/rccm.200505-758OC
  80. Cho SH, Park HW, Rosenberg DM. The current status of asthma in Korea. J Korean Med Sci 2006;21:181-7. https://doi.org/10.3346/jkms.2006.21.2.181
  81. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med 2001;344:350-62. https://doi.org/10.1056/NEJM200102013440507
  82. Choi JP, Kim YS, Tae YM, Choi EJ, Hong BS, Jeon SG, Gho YS, Zhu Z, Kim YK. A viral PAMP double-stranded RNA induces allergen-specific Th17 cell response in the airways which is dependent on VEGF and IL-6. Allergy 2010;65:1322-30. https://doi.org/10.1111/j.1398-9995.2010.02369.x
  83. Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 cells: new players in asthma pathogenesis. Allergy 2011;66:989-98. https://doi.org/10.1111/j.1398-9995.2011.02576.x

Cited by

  1. Female Asthma Has a Negative Effect on Fertility: What Is the Connection? vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/131092
  2. 난알부민으로 유도된 천식 마우스에서 상백피 추출물의 면역조절효능 연구 vol.29, pp.4, 2013, https://doi.org/10.6116/kjh.2014.29.4.1
  3. Statins in Asthma: Potential Beneficial Effects and Limitations vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/835204
  4. Cost-effectiveness of asthma therapy: a comprehensive review vol.52, pp.6, 2015, https://doi.org/10.3109/02770903.2014.999283
  5. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma vol.7, pp.None, 2016, https://doi.org/10.3389/fimmu.2016.00620
  6. Animal allergy in veterinarian researchers vol.4, pp.6, 2016, https://doi.org/10.4168/aard.2016.4.6.387
  7. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment vol.196, pp.5, 2013, https://doi.org/10.4049/jimmunol.1500747
  8. Asthma Phenotypes and Endotypes: Implications for Personalised Therapy vol.31, pp.5, 2013, https://doi.org/10.1007/s40259-017-0242-5
  9. The Interactive Roles of Lipopolysaccharides and dsRNA/Viruses on Respiratory Epithelial Cells and Dendritic Cells in Allergic Respiratory Disorders: The Hygiene Hypothesis vol.18, pp.11, 2013, https://doi.org/10.3390/ijms18102219
  10. Activated Leukocyte Cell Adhesion Molecule Stimulates the T-Cell Response in Allergic Asthma vol.197, pp.8, 2013, https://doi.org/10.1164/rccm.201703-0532oc
  11. Human Toxocara Infection: Allergy and Immune Responses vol.18, pp.2, 2013, https://doi.org/10.2174/1871523018666181210115840
  12. Physical Exercise Induces Immunoregulation of TREG, M2, and pDCs in a Lung Allergic Inflammation Model vol.10, pp.None, 2013, https://doi.org/10.3389/fimmu.2019.00854
  13. Regulatory T Cells in Severe Persistent Asthma in the Era of Monoclonal Antibodies Target Therapies vol.43, pp.2, 2013, https://doi.org/10.1007/s10753-019-01157-0
  14. Pulmonary Dysfunction Augmenting Bacterial Aerosols in Leather Tanneries of Punjab, Pakistan vol.16, pp.None, 2013, https://doi.org/10.2147/copd.s328129
  15. Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO2 vol.16, pp.3, 2013, https://doi.org/10.1088/1748-9326/abe909
  16. Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses vol.21, pp.4, 2021, https://doi.org/10.4110/in.2021.21.e26
  17. Microbiome and mycobiome interaction in house dust mites and impact on airway cells vol.51, pp.12, 2013, https://doi.org/10.1111/cea.13962
  18. Long-term effects of wildfire smoke exposure during early life on the nasal epigenome in rhesus macaques vol.158, pp.None, 2022, https://doi.org/10.1016/j.envint.2021.106993