DOI QR코드

DOI QR Code

A seasonality of ${\delta}D$ of water vapor (850-500 hPa) observed from space over Jeju Island, Korea

  • Lee, Jeonghoon (Jet Propulsion Laboratory, California Institute of Technology) ;
  • Worden, John (Jet Propulsion Laboratory, California Institute of Technology) ;
  • Koh, Dong-Chan (Korea Institute of Geoscience and Mineral Resources) ;
  • Yoshimura, Kei (Atmospheric and Ocean Research Institute, University of Tokyo) ;
  • Lee, Jung-Eun (Jet Propulsion Laboratory, California Institute of Technology)
  • Published : 2013.03.31

Abstract

We examined the seasonal variations of isotopic composition of water vapor in the lower troposphere (850-500 hPa) to relate those of precipitation and groundwater using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the volcanic Island of Jeju, Korea. We ran an isotope-enabled general circulation model (IsoGSM) and calculated 120-hr reversecalculated trajectories for air parcels corresponding to the TES observations to better understand the seasonal variations of ${\delta}D$ of water vapor in the lower troposphere. ${\delta}D$ of precipitation by previous studies and the model results show winter-enriched, while summer-enriched water vapor isotope is observed by the TES observations, which may require a validation campaign using in-situ measurements or continuous monitoring of water vapor isotopes around Jeju Island.

Keywords

References

  1. Araguas-Araguas, L., Froehlich, K., and Rozanski, K., 1998, Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, 103, No. D22, 28721-28742. https://doi.org/10.1029/98JD02582
  2. Beer, R., 2006, TES on the Aura mission: Scientific objectives, measurements, and analysis overview. IEEE Transactions on Geoscience and Remote Sensing, 44, 1102-1105. https://doi.org/10.1109/TGRS.2005.863716
  3. Brown, D., Worden, J., and Noone, D., 2008, Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. Journal of Geophysical Research, 113, D15124, doi:10.1029/2007JD009676.
  4. Davis, G.H., Lee, C.K., Bradley, E., and Payne, B.R., 1970, Geohydrologic interpretation of a volcanic island from environmental isotopes. Water Resources Research, 6, 99-109. https://doi.org/10.1029/WR006i001p00099
  5. Ersek, V., Mix, A.C., and Clark, P.U., 2010, Variations of ${\delta}^{18}O$ in rainwater from southwestern Oregon. Journal of Geophysical Research, 115, D09109, doi:10.1029/2009JD013345.
  6. Feng, X., Faiia, A.M., and Posmentier, E.S., 2009, Seasonality of isotopes in precipitation: A global perspective. Journal of Geophysical Research, 114, D08116, doi:10.1029/2008JD011279.
  7. Hoffmann, G., Werner, M., and Heimann, M., 1998, Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. Journal of Geophysical Research, 103, D14, 16871-16896. https://doi.org/10.1029/98JD00423
  8. IAEA/WMO, 2006, Global Network of Isotopes in Precipitaion. The GNIP Database, available online at http://isohis.iaea.irg.
  9. Jo, K.-N., Woo, K.S., Hong, G.H., Kim, S.H., and Suk, B.C., 2010, Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): An example from Seopdong Cave, Republic of Korea. Earth and Planetary Science Letters, 295, 441-450. https://doi.org/10.1016/j.epsl.2010.04.024
  10. Johnson, L.R., Sharp, Z., Galewsky, J., Strong, M., Gupta, P., Baer, D., and Noone, D., 2011, Hydrogen isotope measurements of water vapor and a correction for a laser instrument measurement bias at lower water vapor concentrations: applications to measurements from Mauna Loa Observatory, Hawaii. Rapid Communications in Mass Spectroscopy, 25, 608-616. https://doi.org/10.1002/rcm.4894
  11. Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., Koh, G.-W., and Woo, N.-C., 2003, Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270, 282--294. https://doi.org/10.1016/S0022-1694(02)00307-4
  12. Koh, D.-C., Chang, H.-W., Lee, K.-W., Ko, K.-S., Kim, Y., and Park, W.-B., 2005, Hydrogeochemistry and environmental isotopes of groundwater in Jeju volcanic island, Korea: implications for nitrate contamination. Hydrological Processes, 19, 2225-2245. https://doi.org/10.1002/hyp.5672
  13. Lawrence, J.R., Gedzelman, S.D., Dexheimer, D., Cho, H.-K., Carrie, G.D., Gasparini, R., Anderson, C.R., Bowman, K.P., and Biggerstaff, M.I., 2004, Stable isotopic composition of water vapor in the tropics. Journal of Geophysical Research, 109, D06115, doi:10.1029/2003JD004046.
  14. Lee, J.E. and Fung, I., 2008, "Amount effect" of water isotopes and quantitative analysis of post-condensation processes. Hydrological Processes, 22, 1-8. https://doi.org/10.1002/hyp.6637
  15. Lee, J.E., Fung, I., DePaolo, D.J., and Henning, C.C., 2007, Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. Journal of Geophysical Research, 112, D16306, doi:10.1029/2006JD007657.
  16. Lee, J., Feng, X., Posmentier, E.S., Faiia, A.M., and Taylor, S., 2009, Stable isotopic exchange rate constant between snow and liquid water. Chemical Geology, 260, 57-62. https://doi.org/10.1016/j.chemgeo.2008.11.023
  17. Lee, J., Feng, X., Faiia, A.M., Posmentier, E.S., Kirchner, J.W., Osterhuber, R., and Taylor, S., 2010a, Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology, 270, 126-134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  18. Lee, J., Feng, X., Faiia, A., Posmentier, E., Osterhuber, R., and Kirchner, J., 2010b, Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water. Water Resources Research, 46, W11512, doi:10.1029/2009WR008306.
  19. Lee, J., Worden, J., Noone, D. Bowman, K., Eldering, A., LeGrande, A., Li, J.-L.F., Schmidt, G., and Sodemann, H., 2011, Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmospheric Chemistry and Physics, 11, 741-752. https://doi.org/10.5194/acp-11-741-2011
  20. Lee, K.-S., Wenner, D.B., and Lee, I., 1999, Using H- and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea. Journal of Hydrology, 222, 66-74.
  21. Lee, K.-S., Grundstein, A.J., Wenner, D.B., Choi, M.-S., Woo, N.-C., and Lee, D.-H., 2003, Climatic controls on the stable isotopic composition of precipitation in Northeast Asia. Climate Research, 23, 137-148. https://doi.org/10.3354/cr023137
  22. Lee, K.-S., Kim, J.-M., Lee, D.-R., Kim, Y., and Lee, D., 2007, Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. Journal of Hydrology, 345, 199-211. https://doi.org/10.1016/j.jhydrol.2007.08.006
  23. Lee, S., Shimada, J., and Kayane, I., 1999, Stable isotopes in precipitation in the volcanic island of Cheju, Korea. Hydrological Processes, 13, 113-121. https://doi.org/10.1002/(SICI)1099-1085(199901)13:1<113::AID-HYP698>3.0.CO;2-P
  24. Liu, Y., Hou, S., Hong, S., Hur, S.D., Lee, K., and Wang, Y., 2011, High-resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journal of Geophysical Research, 116, D12307, doi:10.1029/2010JD015191.
  25. Peng, T.-R., Wang, C.-H., Huang, C.-C., Fei, L.-Y., Chen, C.-T.A., and Hwong, J.-L., 2010, Stable isotopic characteristics of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289, 357-366. https://doi.org/10.1016/j.epsl.2009.11.024
  26. Posmentier, E.S., Feng, X., and Zhao, M., 2004, Seasonal variations of precipitation $d^{18}O$ in eastern Asia. Journal of Geophysical Research, 109, D23106, doi:10.1029/2004JD004510.
  27. Risi, C., Bony, S., and Vimeux, F., 2008, Influence of convective processes on the isotopic composition (${\delta}^{18}O$ and ${\delta}D$) of precipitation water vapor in the tropics: 2. Physical interpretation of the amount effect. Journal of Geophysical Research, 113, D19306, doi: 10.1029/2008JD009943.
  28. Risi, C., et al., 2012, Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 117, D05303, doi:10.1029/ 2011JD016621.
  29. Strong, M., Sharp, Z.D., and Gutzler, D.S., 2007, Diagnosing moisture transport using D/H ratios of water vapor. Geophysical Research Letter, 34, L03404, doi:10.1029/2006GL028307.
  30. Worden, J., et al., 2004, Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. Journal of Geophysical Research, 109, D09308, doi:10.1029/ 2004JD004522.
  31. Worden, J., et al., 2006, Tropospheric emission spectrometer observations of the tropospheric HDO/$H_2O$ ratio: Estimation approach and characterization. Journal of Geophysical Research, 111, D16309, doi:10.1029/2005JD006606.
  32. Worden, J., Noone, D., and Bowman, K., 2007, Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445, 528-532. https://doi.org/10.1038/nature05508
  33. Worden, J., et al., 2011, Estimate of bias in Aura TES HDO/$H_2O$ profiles from comparison of TES and in situ HDO/$H_2O$ measurements at the Mauna Loa Observatory. Atmospheric Chemistry and Physics, 11, 4491-4503. https://doi.org/10.5194/acp-11-4491-2011
  34. Yoshimura, K., Frankenberg, C., Lee, J., Kanamitsu, M., Worden, J., and Röckman, T., 2011, Comparison of an isotopic AGCM with new quasi global satellite measurements of water vapor isotopologues. Journal of Geophysical Research, 116, D19118, doi:10.1029/ 2011Jd016035.
  35. Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T., 2008, Historical isotope simulation using Reanalysis atmospheric data. Journal of Geophysical Research, 113, D19108, doi:10.1029/2008JD010074.
  36. Yoshimura, K., Kanamitsu, M., and Dettinger, M., 2010, Regional downscaling for stable water isotope: A case study of an atmospheric river event. Journal of Geophysical Research, 115, D18114, doi:10.1029/2010JD014032.

Cited by

  1. 수증기안정동위원소를 이용한 해안지역 수분의 이동경로에 관한 연구 vol.46, pp.4, 2013, https://doi.org/10.9719/eeg.2013.46.4.339
  2. Observation system simulation experiments using water vapor isotope information vol.119, pp.13, 2013, https://doi.org/10.1002/2014jd021662
  3. Stable Water Isotopes in Climatology, Meteorology, and Hydrology: A Review vol.93, pp.5, 2013, https://doi.org/10.2151/jmsj.2015-036
  4. Isotopic changes due to convective moistening of the lower troposphere associated with variations in the ENSO and IOD from 2005 to 2006 vol.67, pp.None, 2013, https://doi.org/10.3402/tellusb.v67.26177
  5. 수증기안정동위원소의 물순환 해석에의 적용에 대한 고찰 vol.20, pp.3, 2013, https://doi.org/10.7857/jsge.2015.20.3.034
  6. 고해상도 강우동위원소변동에 대한 연구 vol.48, pp.5, 2013, https://doi.org/10.9719/eeg.2015.48.5.371
  7. 수증기 동위원소 측정을 위한 저온채집법에 대한 연구 vol.38, pp.4, 2013, https://doi.org/10.4217/opr.2016.38.4.339
  8. Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation vol.76, pp.2, 2017, https://doi.org/10.1007/s12665-017-6402-6
  9. Time series analysis for evaluating hydrological responses of pore-water pressure to rainfall in a slope vol.62, pp.9, 2017, https://doi.org/10.1080/02626667.2017.1328105
  10. 1000-Year Quasi-Periodicity of Weak Monsoon Events in Temperate Northeast Asia since the Mid-Holocene vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-15566-4
  11. Development of a calibration system for stable water vapor isotope measurements using Cavity Ring-Down Spectroscope vol.56, pp.3, 2020, https://doi.org/10.14770/jgsk.2020.56.3.395