DOI QR코드

DOI QR Code

Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine

  • Murphy, Matthew B (Celling Biosciences) ;
  • Moncivais, Kathryn (Celling Biosciences) ;
  • Caplan, Arnold I. (Department of Biology, Skeletal Research Center, Case Western Reserve University)
  • Published : 2013.11.30

Abstract

Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.

Keywords

References

  1. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell 2011; 9: 11-15. https://doi.org/10.1016/j.stem.2011.06.008
  2. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213: 341-347. https://doi.org/10.1002/jcp.21200
  3. Cohnheim J. Ueber Entzundung und Eiterung. Archiv fur Pathologische Anatomie und Physiologie und fur Klinische Medicin 1867; 40: 1-79.
  4. Maximow A. Relation of blood cells to connective tissues and endothelium. Physiol Rev 1924; 4: 533-563.
  5. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381-390.
  6. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 1974; 17: 331-340. https://doi.org/10.1097/00007890-197404000-00001
  7. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267-274.
  8. Owen M. Marrow stromal stem cells. J Cell Sci 1988; 10: 63-76.
  9. Owen M. The marrow stromal cell system. In: Beresford J, Owen M (eds) Marrow Stromal Cell Culture. Cambridge University Press: New York, 1988. pp 1-9.
  10. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60.
  11. Owen M. Lineage of osteogenic cells and their relationship to the stromal system. J Bone Miner Res 1985; 3: 1-25.
  12. Goshima J, Goldberg V, Caplan A. The osteogenic potential of cultureexpanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res 1991; 262: 298-311.
  13. Haynesworth S, Baber M, Caplan A. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69-80. https://doi.org/10.1016/8756-3282(92)90363-2
  14. Haynesworth S, Goshima J, Goldberg V, Caplan A. Characterization of cells with osteogenic potential from human bone marrow. Bone 1992; 13: 81-88. https://doi.org/10.1016/8756-3282(92)90364-3
  15. Caplan A. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650. https://doi.org/10.1002/jor.1100090504
  16. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313. https://doi.org/10.1016/j.stem.2008.07.003
  17. Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008; 3: 229-230. https://doi.org/10.1016/j.stem.2008.08.008
  18. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102: 77-85. https://doi.org/10.1161/CIRCRESAHA.107.159475
  19. Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 2013; 83: 134-140.
  20. Da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119: 2204-2213. https://doi.org/10.1242/jcs.02932
  21. Da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 2009; 15: 221-229. https://doi.org/10.1089/ten.tea.2008.0103
  22. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324-336. https://doi.org/10.1016/j.cell.2007.08.025
  23. Bianco P, Costantini M, Dearden LC, Bonucci E. Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol 1988; 68: 401-403. https://doi.org/10.1111/j.1365-2141.1988.tb04225.x
  24. Bianco P, Riminucci M, Kuznetsov S, Robey PG. Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit Rev Eukaryot Gene Expr 1999; 9: 159-173. https://doi.org/10.1615/CritRevEukarGeneExpr.v9.i2.30
  25. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104: 1410-1420. https://doi.org/10.1161/CIRCRESAHA.108.190926
  26. Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology 2008; 47: 126-131.
  27. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106: 419-427. https://doi.org/10.1182/blood-2004-09-3507
  28. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030-1041. https://doi.org/10.1634/stemcells.2005-0319
  29. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15: 862-870. https://doi.org/10.1038/nn.3109
  30. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585-592. https://doi.org/10.1002/(SICI)1097-4652(199603)166:3<585::AID-JCP13>3.0.CO;2-6
  31. Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000; 105: 193-204.
  32. Doorn J, van de Peppel J, van Leeuwen JPTM, Groen N, van Blitterswijk CA, de Boer J. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials 2011; 32: 6089-6098.
  33. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001; 7: 259-264. https://doi.org/10.1016/S1471-4914(01)02016-0
  34. Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3: e1886. https://doi.org/10.1371/journal.pone.0001886
  35. Murphy MB, Blashki D, Buchanan RM, Yazdi IK, Ferrari M, Simmons PJ et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials 2012; 33: 5308-5316. https://doi.org/10.1016/j.biomaterials.2012.04.007
  36. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Transplantation 2005; 105: 1815-1822.
  37. Iyer S, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 2008; 8: 569-582. https://doi.org/10.1517/14712598.8.5.569
  38. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726-736. https://doi.org/10.1038/nri2395
  39. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 2011; 8: 223-272. https://doi.org/10.1513/pats.201012-071DW
  40. Yagi H, Soto-Gutierrez A, Kitagawa Y. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant 2010; 19: 823-830. https://doi.org/10.3727/096368910X508942
  41. Guan X-J, Song L, Han F-F, Cui Z-L, Chen X, Guo X-J et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 2013; 114: 323-335. https://doi.org/10.1002/jcb.24377
  42. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009; 113: 6576-6583. https://doi.org/10.1182/blood-2009-02-203943
  43. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26: 212-222. https://doi.org/10.1634/stemcells.2007-0554
  44. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141-150. https://doi.org/10.1016/j.stem.2007.11.014
  45. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012; 35: 213-221. https://doi.org/10.1007/s12272-012-0202-z
  46. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677-686. https://doi.org/10.1016/j.it.2004.09.015
  47. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70: 325-330. https://doi.org/10.1016/j.humimm.2009.02.008
  48. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140: 883-899. https://doi.org/10.1016/j.cell.2010.01.025
  49. Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 2010; 12: 87-117. https://doi.org/10.1146/annurev-bioeng-070909-105309
  50. Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2012; 30: 1664-1674. https://doi.org/10.1002/stem.1132
  51. Tollervey JR, Lunyak VV. Adult stem cells: simply a tool for regenerative medicine or an additional piece in the puzzle of human aging? Cell Cycle 2011; 10: 4173-4176. https://doi.org/10.4161/cc.10.24.18832
  52. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1173-R1187. https://doi.org/10.1152/ajpregu.00735.2009
  53. Choi EW, Shin IS, Lee HW, Park SY, Park JH, Nam MH et al. Transplantation of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental autoimmune thyroiditis. J Gene Med 2011; 13: 3-16. https://doi.org/10.1002/jgm.1531
  54. Kong Q, Sun B, Bai S, Zhai D, Wang G, Liu Y et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-b. J Neuroimmunol 2009; 207: 83-91. https://doi.org/10.1016/j.jneuroim.2008.12.005
  55. Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012; 33: 8793-8801. https://doi.org/10.1016/j.biomaterials.2012.08.050
  56. Wang Y, Wang YP, Zheng G, Lee VWS, Ouyang L, Chang DHH et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007; 72: 290-299. https://doi.org/10.1038/sj.ki.5002275
  57. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18: 349-355. https://doi.org/10.1016/j.semcancer.2008.03.004
  58. Chaudhuri B, Pramanik K. Key aspects of the mesenchymal stem cells (MSCs) in tissue engineering for in vitro skeletal muscle regeneration. Biotechnol Mol Biol Rev 2012; 7: 5-15.
  59. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317. https://doi.org/10.1080/14653240600855905
  60. Siegel G, Schafer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation 2009; 87: S45-S49. https://doi.org/10.1097/TP.0b013e3181a285b0
  61. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890-896. https://doi.org/10.1016/S0301-472X(03)00110-3
  62. Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E et al. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 2008; 26: 1275-1287. https://doi.org/10.1634/stemcells.2007-0878
  63. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class IImismatched recipient mice. Blood 2005; 106: 4057-4065. https://doi.org/10.1182/blood-2005-03-1004
  64. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY et al. Comparison of allogeneic vs autologous bone marrow- derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308: 2369-2379. https://doi.org/10.1001/jama.2012.25321
  65. Huang X-P, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010; 122: 2419-2429. https://doi.org/10.1161/CIRCULATIONAHA.110.955971
  66. Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the Cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev 2012; 9: 281-302.
  67. Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 2010; 11: 29. https://doi.org/10.1186/1471-2121-11-29
  68. Li N, Sarojini H, An J, Wang E. Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 2010; 112: 1527-1538. https://doi.org/10.1111/j.1471-4159.2009.06565.x
  69. Kim S-Y, Lee J-H, Kim HJ, Park MK, Huh JW, Ro JY et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 2012; 302: L891-L908. https://doi.org/10.1152/ajplung.00288.2011
  70. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673-5683. https://doi.org/10.1038/sj.onc.1205664
  71. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661-669. https://doi.org/10.1096/fj.05-5211com
  72. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 2007; 104: 1643-1648. https://doi.org/10.1073/pnas.0610024104
  73. Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J et al. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA 2008; 105: 18366-18371. https://doi.org/10.1073/pnas.0803437105
  74. Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 2009; 46: 370-377. https://doi.org/10.1016/j.yjmcc.2008.11.016
  75. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R et al. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 2009; 27: 670-681. https://doi.org/10.1634/stemcells.2008-0742
  76. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of antiapoptotic proteins. Leukemia 2002; 16: 1713-1724. https://doi.org/10.1038/sj.leu.2402608
  77. Park K, Kim Y, Choi B, Kim S, Tan A, Lee M et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 2010; 89: 509-517.
  78. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298. https://doi.org/10.1161/01.CIR.0000121425.42966.F1
  79. Frohm M. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272: 15258-15263. https://doi.org/10.1074/jbc.272.24.15258
  80. Wu H, Zhang G, Minton JE, Ross CR, Blecha F. Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and salmonella enterica serovar typhimurium infection. Infect Immun 2000; 68: 5552-5558. https://doi.org/10.1128/IAI.68.10.5552-5558.2000
  81. Rogan MP, Geraghty P, Greene CM, O'Neill SJ, Taggart CC, McElvaney NG. Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res 2006; 7: 29. https://doi.org/10.1186/1465-9921-7-29
  82. Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M. The human cationic antimicrobial protein (hcap18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999; 67: 2561-2566.
  83. Nijnik A, Hancock REW. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 2009; 16: 41-47. https://doi.org/10.1097/MOH.0b013e32831ac517
  84. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106: 3806-3811. https://doi.org/10.1073/pnas.0900244106
  85. Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10. production. Nat Med 2009; 15: 42-49. https://doi.org/10.1038/nm.1905
  86. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929-939. https://doi.org/10.1136/gut.2008.168534
  87. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229-2238. https://doi.org/10.1002/stem.544
  88. Bonfield TL, Lennon D, Ghosh SK, DiMarino AM, Weinberg A, Caplan AI. Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery 2013; 03: 139-153. https://doi.org/10.4236/scd.2013.32019
  89. Haniffa MA, Wang X-N, Holtick U, Rae M, Isaacs JD, Dickinson AM et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 2007; 179: 1595-1604.
  90. Meisel R, Brockers S, Heseler K, Degistirici O, Bu lle H, Woite C et al. Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 2011; 25: 648-654. https://doi.org/10.1038/leu.2010.310
  91. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46: 3349-3360. https://doi.org/10.1002/art.10696
  92. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50: 817-827. https://doi.org/10.1002/art.20203
  93. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402-1416. https://doi.org/10.1016/j.exphem.2005.07.003
  94. Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y et al. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun 2005; 332: 297-303. https://doi.org/10.1016/j.bbrc.2005.04.118
  95. Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol 2006; 325: 35-46.
  96. Varma MJO, Breuls RGM, Schouten TE, Jurgens WJFM, Bontkes HJ, Schuurhuis GJ et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 2007; 16: 91-104. https://doi.org/10.1089/scd.2006.0026
  97. Yoshimura K, Shigeura T. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208: 64-76. https://doi.org/10.1002/jcp.20636
  98. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24: 376-385. https://doi.org/10.1634/stemcells.2005-0234
  99. Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 2013; 9: 32-43. https://doi.org/10.1007/s12015-012-9365-8
  100. Simmons P, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55-62.
  101. Gronthos S, Graves S, Ohta S, Simmons P. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 1994; 84: 4164-4173.
  102. Gronthos S, Simmons P, Graves S, Robey G, Integrin-mediated P. interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001; 28: 174-181. https://doi.org/10.1016/S8756-3282(00)00424-5
  103. Lin C-S, Xin Z-C, Deng C-H, Ning H, Lin G, Lue TF. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 2010; 25: 807-815.
  104. Tavassoli M, Crosby W. Transplantation of marrow to extramedullary sites. Science 1968; 161: 54-56. https://doi.org/10.1126/science.161.3836.54
  105. Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005; 36: 203-206. https://doi.org/10.1016/j.injury.2004.01.009
  106. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. J Bone Joint Surg 2005: 1430-1437.
  107. J Centeno C, R Schultz J, Cheever M. A case series of percutaneous treatment of non-union fractures with autologous, culture expanded, bone marrow derived, mesenchymal stem cells and platelet lysate. J Bioeng Biomed Sci 2011; 01: 2-7.
  108. National Institutes of Health. Questions and Answers about Osteonecrosis (Avascular Necrosis) 2013. http://www.niams.nih.gov/Health_Info/Osteonecrosis
  109. Gangji V, Hauzeur J-P, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. J Bone Joint Surg Am 2004; 86: 1153-1160.
  110. Hernigou P, Daltro G, Filippini P, Mukasa MM, Manicom O. Percutaneous implantation of autologous bone marrow osteoprogenitor cells as treatment of bone avascular necrosis related to sickle cell disease. Open Orthop J 2008; 2: 62-65. https://doi.org/10.2174/1874325000802010062
  111. Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002; 27: S26-S31. https://doi.org/10.1097/00007632-200208151-00007
  112. Steinmann JC, Herkowitz HN. Pseudoarthrosis of the spine. Clin Orthop Relat Res 1992; 284: 80-90.
  113. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29: 3973-3982. https://doi.org/10.1016/j.biomaterials.2008.06.026
  114. Schnabel LV, Lynch ME, van der Meulen MCH, Yeager AE, Kornatowski Ma, Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I geneenhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 2009; 27: 1392-1398. https://doi.org/10.1002/jor.20887
  115. Zhang Y, Wang F, Chen J, Ning Z, Yang L. Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 2012; 36: 1079-1086. https://doi.org/10.1007/s00264-011-1362-z
  116. Haleem AM, Aziz A, Singergy E, Sabry D, Atta HM, Laila A et al. The Clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glu in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 2010; 1: 253-261. https://doi.org/10.1177/1947603510366027
  117. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Techni 2012; 1: e175-e180. https://doi.org/10.1016/j.eats.2012.07.001
  118. Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A et al. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 2013; 97: 145-151.
  119. Felson DT. Osteoarthritis of the Knee. New England J Med 2006; 354: 841-848. https://doi.org/10.1056/NEJMcp051726
  120. Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissuederived stem cells: a case series. J Med Case Reports 2011; 5: 296. https://doi.org/10.1186/1752-1947-5-296
  121. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 2011; 14: 211-215. https://doi.org/10.1111/j.1756-185X.2011.01599.x
  122. Koh Y-G, Choi Y-J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 2012; 19: 1-6. https://doi.org/10.1016/j.knee.2010.12.001
  123. Gruber HE. Hanley ENJ. Recent advances in disc cell biology. Spine 2003; 28: 186-193. https://doi.org/10.1097/00007632-200301150-00017
  124. Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel H-J. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine 2009; 34: 2297-2304. https://doi.org/10.1097/BRS.0b013e3181a54157
  125. McKay RG, Pfeffer Ma, Pasternak RC, Markis JE, Come PC, Nakao S et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 1986; 74: 693-702. https://doi.org/10.1161/01.CIR.74.4.693
  126. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 2009; 81: 474-481.
  127. Ramshorst J, van, Bax J. Intramyocardial bone marrow cell injection for chronic myocardial ischemia. JAMA 2009; 301: 1997-2004. https://doi.org/10.1001/jama.2009.685
  128. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DXM, Ellis SG et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 2012; 308: 2380-2389. https://doi.org/10.1001/jama.2012.28726
  129. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011; 108: 792-796. https://doi.org/10.1161/CIRCRESAHA.111.242610
  130. Haack-Sorensen M, Friis T, Mathiasen AB, Jorgensen E, Hansen L, Dickmeiss E et al. Direct intramyocardial mesenchymal stromal cell injections in patients with severe refractory angina: one-year follow-up. Cell Transplant 2013; 22: 521-528. https://doi.org/10.3727/096368912X636830
  131. Hackett TL, Knight Da, Sin DD. Potential role of stem cells in management of COPD. Int J Chron Obstruct Pulmon Dis 2010; 5: 81-88.
  132. Andrade C, Wong A, Waddell T, Keshavjee S, Liu M. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol 2007; 292: 510-518.
  133. Weiss DJ, Casaburi R, Flanneryc R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013; 143.
  134. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost 2010; 103: 696-709. https://doi.org/10.1160/TH09-10-0688
  135. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435. https://doi.org/10.1016/S0140-6736(02)09670-8
  136. Maione C, Botti C, Coppola CA, Silvestroni C, Lillo S, Schiavone V et al. Effect of autologous transplantation of bone marrow cells concentrated with the marrowxpress system in patients with critical limb ischemia. Trans Plant Proc 2013; 45: 402-406. https://doi.org/10.1016/j.transproceed.2012.10.031
  137. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13: 1299-1312. https://doi.org/10.1089/ten.2006.0278
  138. Jackson D. The diagnosis of the depth of burning. Br J Surg 1953; 40: 588-596. https://doi.org/10.1002/bjs.18004016413
  139. O ksuz S, U lkur E, O ncul O, Kose GT, Ku cu kodaci Z, Urhan M. The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model. Plast Reconstr Surg 2013; 131: 463-471. https://doi.org/10.1097/PRS.0b013e31827c6d6f
  140. Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 2005; 139: 141-144. https://doi.org/10.1007/s10517-005-0232-3
  141. Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen; 18: 50-58.
  142. Nakahara J, Maeda M, Aiso S, Suzuki N. Current concepts in multiple sclerosis: autoimmunity versus oligodendropathy. Clin Rev Allergy Immunol 2012; 42: 26-34. https://doi.org/10.1007/s12016-011-8287-6
  143. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57: 1192-1203. https://doi.org/10.1002/glia.20841
  144. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010; 227: 185-189. https://doi.org/10.1016/j.jneuroim.2010.07.013
  145. Karussis D. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187-1194.
  146. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11: 150-156. https://doi.org/10.1016/S1474-4422(11)70305-2
  147. Lang A, Obeso J. Time to move beyond nigrostriatal dopamine deficiency in Parkinson's disease. Ann Neurol 2004; 55: 761-765. https://doi.org/10.1002/ana.20102
  148. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2: 287-293. https://doi.org/10.1038/35067582
  149. Freed C, Greene P. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Eng J Med 2001; 344: 710-719. https://doi.org/10.1056/NEJM200103083441002
  150. Venkataramana NK, Kumar SKV, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A et al. Open-labeled study of unilateral autologous bone-marrowderived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 2010; 155: 62-70. https://doi.org/10.1016/j.trsl.2009.07.006
  151. Venkataramana NK, Pal R, Rao SaV, Naik AL, Jan M, Nair R et al. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson's disease: a pilot clinical study. Stem Cells Int 2012; 2012: 931902.
  152. Savitz SI, Misra V, Kasam M, Juneja H, Cox CS, Alderman S et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 2011; 70: 59-69. https://doi.org/10.1002/ana.22458
  153. Chen C-J, Ou Y-C, Liao S-L, Chen W-Y, Chen S-Y, Wu C-W et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 2007; 204: 443-453. https://doi.org/10.1016/j.expneurol.2006.12.004
  154. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuroregulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006; 198: 54-64. https://doi.org/10.1016/j.expneurol.2005.10.029
  155. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 2012; 29: 1614-1625. https://doi.org/10.1089/neu.2011.2109
  156. Park H, Shim Y, Ha Y, Yoon S. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating. Tissue Eng 2005; 11: 913-922. https://doi.org/10.1089/ten.2005.11.913
  157. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70: 1238-1247. https://doi.org/10.1227/NEU.0b013e31824387f9
  158. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophagecolony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25: 2066-2073. https://doi.org/10.1634/stemcells.2006-0807
  159. Attar A, Ayten M, Ozdemir M, Ozgencil E, Bozkurt M, Kaptanoglu E et al. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells. Cytotherapy 2011; 13: 54-60. https://doi.org/10.3109/14653249.2010.510506
  160. Zurita M, Otero L, Aguayo C, Bonilla C, Ferreira E, Parajon A et al. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy 2010; 12: 522-537. https://doi.org/10.3109/14653241003615164
  161. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today 1993; 14: 426-430. https://doi.org/10.1016/0167-5699(93)90244-F
  162. Bocelli-Tyndall C, Bracci L, Spagnoli G, Braccini A, Bouchenaki M, Ceredig R et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology 2007; 46: 403-408. https://doi.org/10.1093/rheumatology/kel267
  163. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011; 20: 1297-1308. https://doi.org/10.1089/scd.2010.0466
  164. Gonzalez-Rey E, Gonzalez MA, Varela N, O'Valle F, Hernandez-Cortes P, Rico L et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 2010; 69: 241-248. https://doi.org/10.1136/ard.2008.101881
  165. Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut 2010; 59: 1662-1669. https://doi.org/10.1136/gut.2010.215152
  166. Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut 2011; 60: 788-798. https://doi.org/10.1136/gut.2010.214841
  167. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 2009; 27: 1421-1432. https://doi.org/10.1002/stem.68
  168. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 2010; 19: 317-322. https://doi.org/10.1177/0961203309348983
  169. Prasad VK, Lucas KG, Kleiner GI, Talano JAM, Jacobsohn D, Broadwater G et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (ProchymalTM) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011; 17: 534-541. https://doi.org/10.1016/j.bbmt.2010.04.014
  170. Perin EC, Dib N, DeMaria A, Marroquin OC, Huang PP, Traverse JH et al. A phase II dose-escalation study of allogenic mesenchymal precursor cells in patients with ischemic and non-ischemic heart failure. Paper presented at: 2011 Scientific Sessions of the American Heart Association. 14, November 2011; Orlando, FL, 2011.
  171. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15: 804-811. https://doi.org/10.1016/j.bbmt.2008.03.012
  172. Goldschlager T, Rosenfeld JV, Ghosh P, Itescu S, Blecher C, McLean C et al. Cervical interbody fusion is enhanced by allogeneic mesenchymal precursor cells in an ovine model. Spine 2011; 36: 615-623. https://doi.org/10.1097/BRS.0b013e3181dfcec9
  173. Ghosh P, Moore R, Vernon-Roberts B, Goldschlager T, Pascoe D, Zannettino A et al. Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J Neurosurg Spine 2012; 16: 479-488. https://doi.org/10.3171/2012.1.SPINE11852
  174. Meldrum J, Mesoblast L Mesoblast reports positive interim results in phase 2 trial of proprietary adult stem cells for intervertebral disc repair [Internet] 2013. globenewswire.com.
  175. Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J. 2011; 161: 1078-1087. https://doi.org/10.1016/j.ahj.2011.01.028
  176. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009; 54: 2277-2286. https://doi.org/10.1016/j.jacc.2009.06.055
  177. CFR-Code of Federal Regulations Title 21 (Internet) 2004. cited 17 June 2013.
  178. Carpenter MK, Frey-Vasconcells J, Rao MS. Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 2009; 27: 606-613. https://doi.org/10.1038/nbt0709-606
  179. Parson A. The long journey from stem cells to medical product. Cell 2006; 125: 9-11. https://doi.org/10.1016/j.cell.2006.03.024
  180. Malarkey MAC for BE and R. Untitled Letter to Regenerative Sciences, Inc 7/25/08 (Internet) 2008.
  181. Malarkey MAC for BE and R. Untitled Letter to IntelliCell Biosciences, Inc. 3/13/12 2012.
  182. Malarkey MAC for BE and R. Untitled Letter to Celltex Therapeutics Corporation 9/24/12 2012.
  183. Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001; 19: 117-125. https://doi.org/10.1016/S0736-0266(00)00010-3
  184. Kern S, Eichler H, Stoeve J, Klu ter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301. https://doi.org/10.1634/stemcells.2005-0342
  185. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ''stem'' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368-374. https://doi.org/10.1046/j.1365-2141.2003.04284.x
  186. Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 2000; 96: 3637-3643.
  187. Castro-Malaspina H, Ebell W, Wang S. Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Res 1984; 154: 209-236.
  188. Astori G, Vignati F, Bardelli S, Tubio M, Gola M, Albertini V et al. "In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 2007; 5: 55. https://doi.org/10.1186/1479-5876-5-55
  189. Jurgens WJFM, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res 2008; 332: 415-426. https://doi.org/10.1007/s00441-007-0555-7
  190. Fraser JK, Wulur I, Alfonso Z, Zhu M, Wheeler ES. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 2007; 9: 459-467. https://doi.org/10.1080/14653240701358460
  191. Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells fro. J Cell Biochem 2011; 112: 1206-1218. https://doi.org/10.1002/jcb.23042
  192. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4. expression, and plasticity. Stem Cells 2005; 23: 1105-1112. https://doi.org/10.1634/stemcells.2004-0330
  193. Lund TC, Tolar J, Orchard PJ. Granulocyte colony-stimulating factor mobilized CFU-F can be found in the peripheral blood but have limited expansion potential. Haematologica 2008; 93: 908-912. https://doi.org/10.3324/haematol.12384
  194. Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008; 58: 1731-1740. https://doi.org/10.1002/art.23485
  195. Sessarego N, Parodi A, Podesta M, Benvenuto F, Mogni M, Raviolo V et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 2008; 93: 339-346. https://doi.org/10.3324/haematol.11869

Cited by

  1. Urine-derived stem cells for potential use in bladder repair vol.5, pp.3, 2013, https://doi.org/10.1186/scrt458
  2. Mesenchymal stem cell therapy for the treatment of amyotrophic lateral sclerosis: signals for hope? vol.9, pp.5, 2014, https://doi.org/10.2217/rme.14.30
  3. Application of Biologics in the Treatment of the Rotator Cuff, Meniscus, Cartilage, and Osteoarthritis vol.22, pp.2, 2013, https://doi.org/10.5435/00124635-201402000-00002
  4. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro vol.6, pp.3, 2013, https://doi.org/10.4252/wjsc.v6.i3.256
  5. Bioreactor Systems for Human Bone Tissue Engineering vol.2, pp.2, 2013, https://doi.org/10.3390/pr2020494
  6. Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate vol.111, pp.38, 2013, https://doi.org/10.1073/pnas.1410977111
  7. Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema vol.77, pp.3, 2013, https://doi.org/10.4046/trd.2014.77.3.116
  8. Percutaneous Injection of Autologous Bone Marrow Concentrate Cells Significantly Reduces Lumbar Discogenic Pain Through 12 Months vol.33, pp.1, 2013, https://doi.org/10.1002/stem.1845
  9. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord vol.160, pp.1, 2015, https://doi.org/10.1007/s10517-015-3116-1
  10. Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells vol.26, pp.4, 2013, https://doi.org/10.1007/s10856-015-5500-9
  11. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability vol.20, pp.2, 2013, https://doi.org/10.1007/s12192-014-0560-1
  12. Three-dimensional culture of mesenchymal stem cells vol.12, pp.4, 2013, https://doi.org/10.1007/s13770-015-0005-7
  13. Are All Adult Stem Cells The Same? vol.1, pp.1, 2013, https://doi.org/10.1007/s40883-015-0001-4
  14. Regenerative Engineering: Approaches to Limb Regeneration and Other Grand Challenges vol.1, pp.1, 2015, https://doi.org/10.1007/s40883-015-0006-z
  15. Conditioned bio-interfaces of silicon/porous silicon micro-patterns lead to the chondrogenesis of hMSCs vol.5, pp.112, 2013, https://doi.org/10.1039/c5ra09069e
  16. Spatially defined stem cell-laden hydrogel islands for directing endothelial tubulogenesis vol.3, pp.40, 2013, https://doi.org/10.1039/c5tb01294e
  17. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds vol.11, pp.4, 2013, https://doi.org/10.1080/15476278.2015.1126018
  18. Mesenchymal stem cell printing and process regulated cell properties vol.7, pp.4, 2013, https://doi.org/10.1088/1758-5090/7/4/044106
  19. Human Myoblast and Mesenchymal Stem Cell Interactions Visualized by Videomicroscopy vol.26, pp.6, 2013, https://doi.org/10.1089/hgtb.2015.100
  20. Licensing by Inflammatory Cytokines Abolishes Heterogeneity of Immunosuppressive Function of Mesenchymal Stem Cell Population vol.24, pp.18, 2015, https://doi.org/10.1089/scd.2014.0581
  21. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/640218
  22. Human Mesenchymal Stromal Cells Transplantation May Enhance or Inhibit 4T1 Murine Breast Adenocarcinoma through Different Approaches vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/796215
  23. Allogeneic Cell Therapy : A New Paradigm in Therapeutics vol.116, pp.1, 2013, https://doi.org/10.1161/circresaha.114.305495
  24. The developmental basis of mesenchymal stem/stromal cells (MSCs) vol.15, pp.None, 2013, https://doi.org/10.1186/s12861-015-0094-5
  25. Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis vol.13, pp.None, 2013, https://doi.org/10.1186/s12967-015-0422-3
  26. CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells vol.6, pp.None, 2013, https://doi.org/10.1186/s13287-015-0088-z
  27. Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/ lpr mice vol.6, pp.None, 2013, https://doi.org/10.1186/s13287-015-0091-4
  28. Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study vol.6, pp.None, 2013, https://doi.org/10.1186/s13287-015-0105-2
  29. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness vol.6, pp.1, 2013, https://doi.org/10.1186/s13287-015-0217-8
  30. Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges vol.6, pp.1, 2015, https://doi.org/10.1186/s13287-015-0248-1
  31. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction vol.2, pp.2, 2013, https://doi.org/10.17795/jssc30347
  32. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology vol.4, pp.None, 2015, https://doi.org/10.2147/ov.s66010
  33. Manufacturing, characterization and control of cell-based medicinal products: challenging paradigms toward commercial use vol.10, pp.1, 2013, https://doi.org/10.2217/rme.14.65
  34. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells from Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration vol.24, pp.9, 2013, https://doi.org/10.3727/096368914x683502
  35. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/527926
  36. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/842975
  37. Survival and Biodistribution of Xenogenic Adipose Mesenchymal Stem Cells Is Not Affected by the Degree of Inflammation in Arthritis vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0114962
  38. DNA methyltransferase inhibition accelerates the immunomodulation and migration of human mesenchymal stem cells vol.5, pp.None, 2013, https://doi.org/10.1038/srep08020
  39. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold vol.5, pp.None, 2013, https://doi.org/10.1038/srep08480
  40. Influence of age on rat bone-marrow mesenchymal stem cells potential vol.5, pp.None, 2015, https://doi.org/10.1038/srep16765
  41. Adult mesenchymal stem cells and women’s health vol.22, pp.2, 2015, https://doi.org/10.1097/gme.0000000000000408
  42. Addition of Autologous Mesenchymal Stem Cells to Whole Blood for Bioenhanced ACL Repair Has No Benefit in the Porcine Model vol.43, pp.2, 2013, https://doi.org/10.1177/0363546514559826
  43. Epigenetic approaches to regeneration of bone and cartilage from stem cells vol.15, pp.2, 2015, https://doi.org/10.1517/14712598.2015.960838
  44. Regenerative Treatments to Enhance Orthopedic Surgical Outcome vol.7, pp.4, 2013, https://doi.org/10.1016/j.pmrj.2015.01.015
  45. Endogenous Cell Homing for Intervertebral Disk Regeneration vol.23, pp.4, 2013, https://doi.org/10.5435/jaaos-d-15-00096
  46. Biological therapies for inherited diseases: social and bioethical considerations. Hemophilia as an example vol.15, pp.5, 2013, https://doi.org/10.1517/14712598.2015.1029451
  47. Osteoprogenitor Cells from Bone Marrow and Cortical Bone: Understanding How the Environment Affects Their Fate vol.24, pp.9, 2013, https://doi.org/10.1089/scd.2014.0351
  48. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129999
  49. The Effect of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Collagenase-Induced Intracerebral Hemorrhage Rat Model vol.24, pp.2, 2013, https://doi.org/10.5607/en.2015.24.2.146
  50. Melatonin pretreatment of human adipose tissue-derived mesenchymal stromal cells enhances their prosurvival and protective effects on human kidney cells vol.308, pp.12, 2013, https://doi.org/10.1152/ajprenal.00512.2014
  51. Down-regulation of the autophagy gene, ATG7 , protects bone marrow-derived mesenchymal stem cells from stressful conditions vol.50, pp.2, 2013, https://doi.org/10.5045/br.2015.50.2.80
  52. The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema vol.78, pp.3, 2013, https://doi.org/10.4046/trd.2015.78.3.239
  53. Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence vol.6, pp.20, 2015, https://doi.org/10.18632/oncotarget.4852
  54. Ultrasonography-guided transplantation facilitates perineural delivery of stem cells vol.19, pp.4, 2015, https://doi.org/10.1080/19768354.2015.1053521
  55. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α vol.10, pp.9, 2013, https://doi.org/10.1371/journal.pone.0137612
  56. ASC Spheroid Geometry and Culture Oxygenation Differentially Impact Induction of Preangiogenic Behaviors in Endothelial Cells vol.24, pp.11, 2013, https://doi.org/10.3727/096368914x684051
  57. In Vivo Tracking and Fate of Intra-Articularly Injected Superparamagnetic Iron Oxide Particle-Labeled Multipotent Stromal Cells in an Ovine Model of Osteoarthritis vol.24, pp.11, 2015, https://doi.org/10.3727/096368914x685654
  58. Regenerative medicine: Current therapies and future directions vol.112, pp.47, 2015, https://doi.org/10.1073/pnas.1508520112
  59. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies vol.13, pp.1, 2013, https://doi.org/10.1186/s12916-015-0426-0
  60. Antifibrotic, Antioxidant, and Immunomodulatory Effects of Mesenchymal Stem Cells in HOCl‐Induced Systemic Sclerosis vol.68, pp.4, 2013, https://doi.org/10.1002/art.39477
  61. Monitoring the ex‐vivo expansion of human mesenchymal stem/stromal cells in xeno‐free microcarrier‐based reactor systems by MIR spectroscopy vol.32, pp.2, 2013, https://doi.org/10.1002/btpr.2215
  62. Perivascular Stem Cells at the Tip of Mouse Incisors Regulate Tissue Regeneration vol.31, pp.3, 2016, https://doi.org/10.1002/jbmr.2717
  63. Regenerative approaches for the treatment of early OA vol.24, pp.6, 2013, https://doi.org/10.1007/s00167-016-4125-y
  64. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up vol.40, pp.1, 2013, https://doi.org/10.1007/s00264-015-2886-4
  65. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration vol.44, pp.7, 2013, https://doi.org/10.1007/s10439-015-1508-z
  66. Superiority of Three-Dimensional Stem Cell Clusters over Monolayer Culture: An Archetype to Biological Application vol.24, pp.12, 2016, https://doi.org/10.1007/s13233-016-4107-4
  67. MSCS in Scenarios of Infection and Inflammation: Focus on Neonatal Diseases vol.2, pp.2, 2016, https://doi.org/10.1007/s40778-016-0045-5
  68. Performing a Better Bone Marrow Aspiration vol.27, pp.4, 2016, https://doi.org/10.1016/j.pmr.2016.06.009
  69. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models vol.24, pp.5, 2013, https://doi.org/10.1038/mt.2016.12
  70. Growth Factor Dose Tuning for Bone Progenitor Cell Proliferation and Differentiation on Resorbable Poly(propylene fumarate) Scaffolds vol.22, pp.9, 2013, https://doi.org/10.1089/ten.tec.2016.0094
  71. Modulation of Synovial Fluid-Derived Mesenchymal Stem Cells by Intra-Articular and Intraosseous Platelet Rich Plasma Administration vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1247950
  72. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/8270464
  73. Neuromuscular disorders: genes, genetic counseling and therapeutic trials vol.39, pp.3, 2013, https://doi.org/10.1590/1678-4685-gmb-2016-0019
  74. Cell Therapy and Regenerative Medicine Glossary vol.11, pp.8, 2013, https://doi.org/10.2217/rme-2016-1108s
  75. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs vol.3, pp.None, 2013, https://doi.org/10.3389/fvets.2016.00081
  76. All- trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts vol.38, pp.6, 2013, https://doi.org/10.3892/ijmm.2016.2782
  77. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress vol.8, pp.1, 2013, https://doi.org/10.4055/cios.2016.8.1.1
  78. Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling vol.5, pp.6, 2013, https://doi.org/10.5966/sctm.2015-0191
  79. An Innovative, Comprehensive Mapping and Multiscale Analysis of Registered Trials for Stem Cell-Based Regenerative Medicine vol.5, pp.6, 2013, https://doi.org/10.5966/sctm.2015-0329
  80. Mechanical properties of α‐tricalcium phosphate‐based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads vol.104, pp.1, 2016, https://doi.org/10.1002/jbm.b.33362
  81. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process vol.7, pp.None, 2016, https://doi.org/10.1177/2041731416656148
  82. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts vol.7, pp.None, 2013, https://doi.org/10.1177/2041731416661196
  83. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential vol.6, pp.None, 2013, https://doi.org/10.1038/srep22957
  84. PGE 2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact vol.6, pp.None, 2013, https://doi.org/10.1038/srep26298
  85. Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy vol.6, pp.None, 2013, https://doi.org/10.1038/srep26463
  86. Mesenchymal Stem Cells Reshape and Provoke Proliferation of Articular Chondrocytes by Paracrine Secretion vol.6, pp.None, 2013, https://doi.org/10.1038/srep32705
  87. Delivery of human mesenchymal adipose‐derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue‐specific paracrine vol.34, pp.2, 2013, https://doi.org/10.1002/stem.2226
  88. Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties vol.49, pp.2, 2013, https://doi.org/10.3109/08916934.2015.1113267
  89. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies vol.71, pp.2, 2013, https://doi.org/10.6061/clinics/2016(02)10
  90. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology vol.5, pp.1, 2016, https://doi.org/10.3390/cells5010001
  91. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell‐derived factor‐1 and a macrophage recruitment agent enhances wound closure vol.104, pp.4, 2013, https://doi.org/10.1002/jbm.a.35635
  92. Exosomes for repair, regeneration and rejuvenation vol.16, pp.4, 2013, https://doi.org/10.1517/14712598.2016.1131976
  93. Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1 vol.30, pp.5, 2013, https://doi.org/10.1038/leu.2016.33
  94. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis vol.5, pp.5, 2013, https://doi.org/10.5966/sctm.2015-0233
  95. Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse vol.8, pp.5, 2013, https://doi.org/10.4252/wjsc.v8.i5.202
  96. The Quest toward limb regeneration: a regenerative engineering approach vol.3, pp.2, 2013, https://doi.org/10.1093/rb/rbw002
  97. Indirect co-culture of vascular smooth muscle cells with bone marrow mesenchymal stem cells inhibits vascular calcification and downregulates the Wnt signaling pathways vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5182
  98. Adenoviral vector encoding soluble Flt-1 engineered human endometrial mesenchymal stem cells effectively regress endometriotic lesions in NOD/SCID mice vol.23, pp.7, 2013, https://doi.org/10.1038/gt.2016.30
  99. Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure vol.20, pp.3, 2013, https://doi.org/10.7508/ibj.2016.03.002
  100. Dental mesenchymal stem cells vol.143, pp.13, 2016, https://doi.org/10.1242/dev.134189
  101. AAOS Research Symposium Updates and Consensus : Biologic Treatment of Orthopaedic Injuries vol.24, pp.7, 2013, https://doi.org/10.5435/jaaos-d-16-00086
  102. hi PSC ‐derived iMSC s: NextGen MSC s as an advanced therapeutically active cell resource for regenerative medicine vol.20, pp.8, 2016, https://doi.org/10.1111/jcmm.12839
  103. Clinical‐grade quality platelet‐rich plasma releasate (PRP‐R/SRGF) from CaCl2‐activated platelet concentrates promoted expansion of mesenchymal stromal cells vol.111, pp.2, 2013, https://doi.org/10.1111/vox.12405
  104. Human Adipose-Derived Mesenchymal Stromal/Stem Cells Remain Viable and Metabolically Active Following Needle Passage vol.8, pp.9, 2013, https://doi.org/10.1016/j.pmrj.2016.01.010
  105. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn's disease – a phase 1 trial with three doses vol.44, pp.5, 2013, https://doi.org/10.1111/apt.13717
  106. Human Pluripotent Stem Cells: Advances in Chondrogenic Differentiation and Articular Cartilage Regeneration vol.2, pp.3, 2013, https://doi.org/10.1007/s40610-016-0041-7
  107. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells vol.11, pp.9, 2013, https://doi.org/10.1371/journal.pone.0162332
  108. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury vol.7, pp.9, 2016, https://doi.org/10.1038/cddis.2016.276
  109. The Effects of Preconditioning on Survival of Mesenchymal Stem Cells in Vitro vol.3, pp.4, 2013, https://doi.org/10.17795/gct-40229
  110. Soft Material Approach to Induce Oxidative Stress in Mesenchymal Stem Cells for Functional Tissue Repair vol.8, pp.40, 2016, https://doi.org/10.1021/acsami.6b09222
  111. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model vol.48, pp.10, 2016, https://doi.org/10.1038/emm.2016.93
  112. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells vol.39, pp.10, 2013, https://doi.org/10.14348/molcells.2016.0095
  113. Influence of titanium dioxide nanorods with different surface chemistry on the differentiation of rat bone marrow mesenchymal stem cells vol.4, pp.43, 2013, https://doi.org/10.1039/c6tb02149b
  114. LNGFR+THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells vol.92, pp.5, 2016, https://doi.org/10.1016/j.diff.2016.04.003
  115. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations vol.7, pp.1, 2016, https://doi.org/10.1186/s13287-015-0266-z
  116. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells vol.7, pp.1, 2013, https://doi.org/10.1186/s13287-016-0359-3
  117. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues vol.7, pp.1, 2016, https://doi.org/10.1186/s13287-016-0383-3
  118. Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery vol.11, pp.12, 2013, https://doi.org/10.1371/journal.pone.0168036
  119. Mesenchymal stromal cells with enhanced therapeutic properties vol.8, pp.12, 2016, https://doi.org/10.2217/imt-2016-0098
  120. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion vol.6, pp.16, 2013, https://doi.org/10.1002/adhm.201700072
  121. Mesenchymal Stem Cells: Time to Change the Name! vol.6, pp.6, 2013, https://doi.org/10.1002/sctm.17-0051
  122. The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage vol.13, pp.1, 2017, https://doi.org/10.1007/s12015-016-9699-8
  123. Biological Therapies in Regenerative Sports Medicine vol.47, pp.5, 2013, https://doi.org/10.1007/s40279-016-0620-z
  124. Cytoskeletal Priming of Mesenchymal Stem Cells to a Medicinal Phenotype vol.3, pp.1, 2017, https://doi.org/10.1007/s40883-016-0021-8
  125. Effects of Different Fibre Alignments and Bioactive Coatings on Mesenchymal Stem/Stromal Cell Adhesion and Proliferation in Poly (ɛ-caprolactone) Scaffolds towards Cartilage Repair vol.12, pp.None, 2013, https://doi.org/10.1016/j.promfg.2017.08.034
  126. Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and Adipogenic Differentiation by Transcription Factor Dynamics vol.8, pp.4, 2013, https://doi.org/10.1016/j.stemcr.2017.02.018
  127. Using biomaterials to rewire the process of wound repair vol.5, pp.8, 2013, https://doi.org/10.1039/c7bm00295e
  128. In situ forming hydrogels with long-lasting miR-21 enhances the therapeutic potential of MSC by sustaining stimulation of target gene vol.28, pp.15, 2017, https://doi.org/10.1080/09205063.2017.1341675
  129. Superparamagnetic Iron Oxide Nanoparticles in Musculoskeletal Biology vol.23, pp.4, 2013, https://doi.org/10.1089/ten.teb.2016.0437
  130. Questions and Challenges in the Development of Mesenchymal Stromal/Stem Cell-Based Therapies in Veterinary Medicine vol.23, pp.5, 2013, https://doi.org/10.1089/ten.teb.2016.0451
  131. Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/1836960
  132. Advances and Prospects in Stem Cells for Cartilage Regeneration vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/4130607
  133. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/5173732
  134. Evaluating Wharton's Jelly-Derived Mesenchymal Stem Cell's Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/5259849
  135. Autologous Stem Cells Combined Core Decompression for Treatment of Avascular Necrosis of the Femoral Head: A Systematic Meta-Analysis vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/6136205
  136. Phenotypic Characterization of Adherent Cells Population CD34+ CD90+ CD105+ Derived from Wharton’s Jelly vol.23, pp.None, 2013, https://doi.org/10.12659/msm.902186
  137. Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract vol.12, pp.None, 2013, https://doi.org/10.2147/copd.s146201
  138. Mesenchymal stromal cell therapy in COPD: from bench to bedside vol.12, pp.None, 2013, https://doi.org/10.2147/copd.s146671
  139. A Co-culture Assay to Determine Efficacy of TNF-α Suppression by Biomechanically Induced Human Bone Marrow Mesenchymal Stem Cells vol.7, pp.16, 2013, https://doi.org/10.21769/bioprotoc.2513
  140. Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective vol.8, pp.None, 2013, https://doi.org/10.3389/fgene.2017.00220
  141. Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00881
  142. TREM-2 negatively regulates LPS-mediated inflammatory response in rat bone marrow-derived MSCs vol.16, pp.4, 2013, https://doi.org/10.3892/mmr.2017.7212
  143. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease vol.80, pp.1, 2017, https://doi.org/10.4046/trd.2017.80.1.1
  144. Influence of scaffold design on host immune and stem cell responses vol.29, pp.None, 2017, https://doi.org/10.1016/j.smim.2017.03.001
  145. Measurement of oxygen tension within mesenchymal stem cell spheroids vol.14, pp.127, 2013, https://doi.org/10.1098/rsif.2016.0851
  146. Periodontal Tissue Regeneration Using Syngeneic Adipose‐Derived Stromal Cells in a Mouse Model vol.6, pp.2, 2017, https://doi.org/10.5966/sctm.2016-0028
  147. Multimodal Delivery of Isogenic Mesenchymal Stem Cells Yields Synergistic Protection from Retinal Degeneration and Vision Loss vol.6, pp.2, 2013, https://doi.org/10.5966/sctm.2016-0181
  148. TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed vol.5, pp.None, 2013, https://doi.org/10.3389/fcell.2017.00028
  149. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate vol.5, pp.None, 2013, https://doi.org/10.3389/fbioe.2017.00032
  150. Rationale for Determining the Functional Potency of Mesenchymal Stem Cells in Preventing Regulated Cell Death for Therapeutic Use vol.6, pp.3, 2013, https://doi.org/10.5966/sctm.2016-0289
  151. Mesenchymal Stem Cells: The Magic Cure for Intraventricular Hemorrhage? vol.26, pp.3, 2013, https://doi.org/10.3727/096368916x694193
  152. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells vol.6, pp.3, 2013, https://doi.org/10.3892/br.2017.845
  153. Repair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First‐in‐Human Study vol.6, pp.4, 2013, https://doi.org/10.1002/sctm.16-0199
  154. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis vol.1860, pp.4, 2013, https://doi.org/10.1016/j.bbagrm.2017.01.003
  155. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review vol.17, pp.2, 2013, https://doi.org/10.4110/in.2017.17.2.89
  156. Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells vol.35, pp.5, 2013, https://doi.org/10.1002/stem.2587
  157. Diverging Concepts and Novel Perspectives in Regenerative Medicine vol.18, pp.5, 2013, https://doi.org/10.3390/ijms18051021
  158. Expansion of adipose tissue‐derived stromal cells at “physiologic” hypoxia attenuates replicative senescence vol.35, pp.4, 2013, https://doi.org/10.1002/cbf.3267
  159. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration vol.35, pp.6, 2013, https://doi.org/10.1002/stem.2614
  160. iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review vol.8, pp.4, 2013, https://doi.org/10.1016/j.jare.2017.02.004
  161. Review: Interventions for Cartilage Disease: Current State-of-the-Art and Emerging Technologies : CURRENT STATE OF CARTILAGE REPAIR vol.69, pp.7, 2013, https://doi.org/10.1002/art.40094
  162. Use of Freshly Isolated Human Adipose Stromal Cells for Clinical Applications vol.37, pp.3, 2013, https://doi.org/10.1093/asj/sjw270
  163. Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells vol.25, pp.4, 2013, https://doi.org/10.4062/biomolther.2016.263
  164. Endothelial-derived extracellular matrix ameliorate the stemness deprivation during ex vivo expansion of mouse bone marrow-derived mesenchymal stem cells vol.12, pp.8, 2013, https://doi.org/10.1371/journal.pone.0184111
  165. Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease vol.3, pp.9, 2017, https://doi.org/10.1097/txd.0000000000000724
  166. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells vol.491, pp.3, 2017, https://doi.org/10.1016/j.bbrc.2017.07.126
  167. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells vol.6, pp.10, 2013, https://doi.org/10.1002/sctm.17-0039
  168. Therapeutic potential of mesenchymal stem cells for diabetes vol.59, pp.3, 2013, https://doi.org/10.1530/jme-17-0117
  169. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing vol.12, pp.19, 2017, https://doi.org/10.2217/nnm-2017-0173
  170. Human adipose-derived stem cells support the growth of limbal stem/progenitor cells vol.12, pp.10, 2017, https://doi.org/10.1371/journal.pone.0186238
  171. Cell-based therapeutic strategies for multiple sclerosis vol.140, pp.11, 2013, https://doi.org/10.1093/brain/awx154
  172. Regenerative Therapies in Dry Eye Disease: From Growth Factors to Cell Therapy vol.18, pp.11, 2013, https://doi.org/10.3390/ijms18112264
  173. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design vol.3, pp.11, 2017, https://doi.org/10.1021/acsbiomaterials.7b00012
  174. Transplantation of Allogeneic PW1 pos /Pax7 neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle vol.2, pp.6, 2013, https://doi.org/10.1016/j.jacbts.2017.08.002
  175. Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-07049-3
  176. Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-07274-w
  177. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-12692-x
  178. Controlled delivery and minimally invasive imaging of stem cells in the lung vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13280-9
  179. Anti-inflammatory and anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse model of bleomycin-induced interstitial pneumonia vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-15022-3
  180. Tissue Engineering for Orthodontists: The Transforming Science Simplified vol.23, pp.4, 2013, https://doi.org/10.1053/j.sodo.2017.07.005
  181. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-016-0469-y
  182. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0512-7
  183. Isolation and characterization of equine native MSC populations vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0525-2
  184. Harvesting multipotent progenitor cells from a small sample of tonsillar biopsy for clinical applications vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0619-x
  185. pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo vol.8, pp.1, 2017, https://doi.org/10.1186/s13287-017-0655-6
  186. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0742-8
  187. Methods and practices to diversify cell-based products vol.12, pp.8, 2013, https://doi.org/10.2217/rme-2017-0093
  188. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-mont vol.26, pp.7, 2013, https://doi.org/10.1007/s00167-017-4479-9
  189. Regenerative therapies increase survivorship of avascular necrosis of the femoral head: a systematic review and meta-analysis vol.42, pp.7, 2018, https://doi.org/10.1007/s00264-018-3787-0
  190. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling vol.372, pp.1, 2013, https://doi.org/10.1007/s00441-017-2765-y
  191. Bone Marrow-Derived Mesenchymal Stem Cells Promoted Cutaneous Wound Healing by Regulating Keratinocyte Migration via β2-Adrenergic Receptor Signaling vol.15, pp.7, 2013, https://doi.org/10.1021/acs.molpharmaceut.7b01138
  192. Bone Targeted Delivery of SDF-1 via Alendronate Functionalized Nanoparticles in Guiding Stem Cell Migration vol.10, pp.28, 2018, https://doi.org/10.1021/acsami.8b08606
  193. Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders vol.83, pp.1, 2018, https://doi.org/10.1038/pr.2017.249
  194. Stem cell tracking using effective self-assembled peptide-modified superparamagnetic nanoparticles vol.10, pp.34, 2013, https://doi.org/10.1039/c7nr07618e
  195. Comparison of Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow, Endometrium, and Adipose Tissue vol.27, pp.21, 2013, https://doi.org/10.1089/scd.2017.0241
  196. Angiogenic Activity of Human Adipose-Derived Mesenchymal Stem Cells Under Simulated Microgravity vol.27, pp.12, 2013, https://doi.org/10.1089/scd.2017.0262
  197. Mechanochemical Effects on Extracellular Signal-Regulated Kinase Dynamics in Stem Cell Differentiation vol.24, pp.15, 2013, https://doi.org/10.1089/ten.tea.2017.0365
  198. Leucocyte and Platelet‐rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine vol.22, pp.3, 2018, https://doi.org/10.1111/jcmm.13468
  199. MicroRNA‐99a is a novel regulator of KDM6B‐mediated osteogenic differentiation of BMSCs vol.22, pp.4, 2013, https://doi.org/10.1111/jcmm.13490
  200. The Role of Interplay of Mesenchymal Stromal Cells and Macrophages in Physiological and Reparative Tissue Remodeling vol.44, pp.1, 2018, https://doi.org/10.1134/s0362119718010036
  201. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/2495848
  202. The Effect of Age on the Regenerative Potential of Human Eyelid Adipose-Derived Stem Cells vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/5654917
  203. Preconditioning by Hydrogen Peroxide Enhances Multiple Properties of Human Decidua Basalis Mesenchymal Stem/Multipotent Stromal Cells vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/6480793
  204. Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/8031718
  205. The Human IL-23 Decoy Receptor Inhibits T-Cells Producing IL-17 by Genetically Engineered Mesenchymal Stem Cells vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/8213912
  206. IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/9108681
  207. The perivascular origin of pathological fibroblasts vol.128, pp.1, 2013, https://doi.org/10.1172/jci93558
  208. Application of stem cells in tissue engineering for defense medicine vol.5, pp.1, 2013, https://doi.org/10.1186/s40779-018-0154-9
  209. The Role of miR-126 in Critical Limb Ischemia Treatment Using Adipose-Derived Stem Cell Therapeutic Factor Concentrate and Extracellular Matrix Microparticles vol.24, pp.None, 2018, https://doi.org/10.12659/msm.905442
  210. Biologic Therapies as Adjunctive Treatments in Rotator Cuff Repair vol.6, pp.7, 2018, https://doi.org/10.2106/jbjs.rvw.17.00149
  211. Biologics for Rotator Cuff Repair : A Critical Analysis Review vol.6, pp.10, 2013, https://doi.org/10.2106/jbjs.rvw.17.00185
  212. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes vol.9, pp.None, 2013, https://doi.org/10.3389/fimmu.2018.01354
  213. Granulocyte-Colony Stimulating Factor-Overexpressing Mesenchymal Stem Cells Exhibit Enhanced Immunomodulatory Actions Through the Recruitment of Suppressor Cells in Experimental Chagas Disease Cardiom vol.9, pp.None, 2013, https://doi.org/10.3389/fimmu.2018.01449
  214. Proliferation and differentiation of rat adipose-derived stem cells are regulated by yes-associated protein vol.42, pp.3, 2013, https://doi.org/10.3892/ijmm.2018.3734
  215. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss vol.65, pp.None, 2013, https://doi.org/10.1016/j.actbio.2017.11.019
  216. The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome vol.84, pp.1, 2013, https://doi.org/10.1097/ta.0000000000001713
  217. Effect of Short-Term Hypoxic Stress on Immunosuppressive Activity of Perivascular Multipotent Stromal Cells vol.73, pp.1, 2013, https://doi.org/10.3103/s0096392518010108
  218. In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells vol.13, pp.1, 2013, https://doi.org/10.1371/journal.pone.0190082
  219. Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB vol.38, pp.1, 2013, https://doi.org/10.1177/0271678x17719645
  220. Neural Stem Cells and Its Derivatives as a New Material for Melanin Inhibition vol.19, pp.1, 2013, https://doi.org/10.3390/ijms19010036
  221. Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells vol.106, pp.2, 2013, https://doi.org/10.1002/jbm.a.36247
  222. IFN‐gamma priming of adipose‐derived stromal cells at “physiological” hypoxia vol.233, pp.2, 2018, https://doi.org/10.1002/jcp.26046
  223. Femtosecond laser micro‐machined polyimide films for cell scaffold applications vol.12, pp.2, 2013, https://doi.org/10.1002/term.2376
  224. COMPARATIVE STUDY OF HIV-POSITIVE HUMAN SERA WITH THIRD- AND FOURTH-GENERATION ENZYME IMMUNOASSAY TEST SYSTEMS vol.11, pp.1, 2013, https://doi.org/10.15407/biotech11.01.070
  225. ISOLATION OF MULTIPOTENT MESENCHIMAL STROMAL CELLS FROM MINIMAL HUMAN ENDOMETRIUM BIOPSY vol.11, pp.1, 2018, https://doi.org/10.15407/biotech11.01.076
  226. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury vol.13, pp.2, 2018, https://doi.org/10.1088/1748-605x/aa9bbb
  227. Biomimetic Tissue-Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies vol.7, pp.6, 2018, https://doi.org/10.1002/adhm.201700919
  228. Therapeutic application of multipotent stem cells vol.233, pp.4, 2013, https://doi.org/10.1002/jcp.25990
  229. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease : Implications for Cellular Therapy vol.27, pp.5, 2013, https://doi.org/10.1177/0963689717738257
  230. Clinical Applications of Bone Tissue Engineering in Orthopedic Trauma vol.6, pp.2, 2013, https://doi.org/10.1007/s40139-018-0166-x
  231. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? vol.73, pp.6, 2013, https://doi.org/10.1136/thoraxjnl-2017-210672
  232. Advanced Glycation End-Products-, C-Type Lectin- and Cysteinyl/ Leukotriene-Receptors in Distinct Mesenchymal Stromal Cell Populations: Differential Transcriptional Profiles in Response to Inflammatio vol.20, pp.2, 2018, https://doi.org/10.22074/cellj.2018.5104
  233. Dynamic Cultivation of Mesenchymal Stem Cell Aggregates vol.5, pp.2, 2013, https://doi.org/10.3390/bioengineering5020048
  234. Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking vol.51, pp.7, 2013, https://doi.org/10.5483/bmbrep.2018.51.7.078
  235. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion vol.75, pp.15, 2013, https://doi.org/10.1007/s00018-018-2764-5
  236. Human Umbilical Cord Matrix Stem Cells Reverse Oxidative Stress-Induced Cell Death and Ameliorate Motor Function and Striatal Atrophy in Rat Model of Huntington Disease vol.34, pp.2, 2013, https://doi.org/10.1007/s12640-018-9884-4
  237. Indirect co‐cultures of healthy mesenchymal stem cells restore the physiological phenotypical profile of psoriatic mesenchymal stem cells vol.193, pp.2, 2013, https://doi.org/10.1111/cei.13141
  238. Increased Internal Porosity and Surface Area of Hydroxyapatite Accelerates Healing and Compensates for Low Bone Marrow Mesenchymal Stem Cell Concentrations in Critically-Sized Bone Defects vol.8, pp.8, 2013, https://doi.org/10.3390/app8081366
  239. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines vol.446, pp.1, 2018, https://doi.org/10.1007/s11010-018-3284-1
  240. Critical aspects and challenges for intervertebral disc repair and regeneration—Harnessing advances in tissue engineering vol.1, pp.3, 2018, https://doi.org/10.1002/jsp2.1029
  241. Performance of marrow stromal cell-seeded small-caliber multilayered vascular graft in a senescent sheep model vol.13, pp.5, 2018, https://doi.org/10.1088/1748-605x/aac7a6
  242. Dual Preconditioning: A Novel Strategy to Withstand Mesenchymal Stem Cells against Harsh Microenvironments vol.8, pp.3, 2018, https://doi.org/10.15171/apb.2018.054
  243. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies vol.66, pp.5, 2013, https://doi.org/10.1007/s00005-018-0509-7
  244. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells vol.75, pp.19, 2013, https://doi.org/10.1007/s00018-018-2871-3
  245. Antitumor virotherapy using syngeneic or allogeneic mesenchymal stem cell carriers induces systemic immune response and intratumoral leukocyte infiltration in mice vol.67, pp.10, 2013, https://doi.org/10.1007/s00262-018-2220-2
  246. Concise Review: Stem/Progenitor Cell Proteoglycans Decorated with 7‐D‐4, 4‐C‐3, and 3‐B‐3(‐) Chondroitin Sulfate Motifs Are Morphogenetic Markers of Ti vol.36, pp.10, 2013, https://doi.org/10.1002/stem.2860
  247. Intratracheal transplantation of mesenchymal stem cells attenuates hyperoxia-induced lung injury by down-regulating, but not direct inhibiting formyl peptide receptor 1 in the newborn mice vol.13, pp.10, 2013, https://doi.org/10.1371/journal.pone.0206311
  248. Evaluating the Current Literature on Treatments Containing Adipose-Derived Stem Cells for Osteoarthritis: a Progress Update vol.20, pp.11, 2013, https://doi.org/10.1007/s11926-018-0776-7
  249. miR‐21 modification enhances the performance of adipose tissue‐derived mesenchymal stem cells for counteracting urethral stricture formation vol.22, pp.11, 2013, https://doi.org/10.1111/jcmm.13834
  250. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process vol.7, pp.11, 2013, https://doi.org/10.3390/cells7110190
  251. Can mesenchymal stem cells and their conditioned medium assist inflammatory chondrocytes recovery? vol.13, pp.11, 2013, https://doi.org/10.1371/journal.pone.0205563
  252. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model vol.121, pp.6, 2013, https://doi.org/10.1016/j.bja.2018.03.032
  253. Secretome analysis of in vitro aged human mesenchymal stem cells reveals IGFBP7 as a putative factor for promoting osteogenesis vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-22855-z
  254. An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-27346-9
  255. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment vol.14, pp.None, 2018, https://doi.org/10.1186/s12917-018-1413-4
  256. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine vol.9, pp.1, 2013, https://doi.org/10.1186/s13287-018-0956-4
  257. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-1018-7
  258. Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells vol.22, pp.1, 2013, https://doi.org/10.1186/s40824-018-0141-y
  259. Recent advances in stem cell therapeutics and tissue engineering strategies vol.22, pp.1, 2013, https://doi.org/10.1186/s40824-018-0148-4
  260. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety vol.183, pp.21, 2013, https://doi.org/10.1136/vr.104867
  261. Tracking Cell Transplants in Femoral Osteonecrosis with Magnetic Resonance Imaging: A Proof-of-Concept Study in Patients vol.24, pp.24, 2013, https://doi.org/10.1158/1078-0432.ccr-18-1687
  262. Upcycling umbilical cords: bridging regenerative medicine with neonatology vol.32, pp.8, 2013, https://doi.org/10.1080/14767058.2017.1405387
  263. Therapeutic Role of Fat Injection in the Treatment of Recalcitrant Migraine Headaches : vol.143, pp.3, 2013, https://doi.org/10.1097/prs.0000000000005353
  264. Distinct Dynamics of Stem and Progenitor Cells in Blood of Polytraumatized Patients vol.51, pp.4, 2013, https://doi.org/10.1097/shk.0000000000001198
  265. Recent advances in pelvic floor repair vol.8, pp.None, 2013, https://doi.org/10.12688/f1000research.15046.1
  266. International Expert Consensus on a Cell Therapy Communication Tool: DOSES vol.101, pp.10, 2013, https://doi.org/10.2106/jbjs.18.00915
  267. Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells vol.82, pp.2, 2019, https://doi.org/10.4046/trd.2018.0044
  268. Mesenchymal Stromal Cell‐Seeded Biomimetic Scaffolds as a Factory of Soluble RANKL in Rankl‐Deficient Osteopetrosis vol.8, pp.1, 2013, https://doi.org/10.1002/sctm.18-0085
  269. A Preview of Selected Articles vol.8, pp.1, 2013, https://doi.org/10.1002/sctm.18-0277
  270. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering vol.51, pp.1, 2013, https://doi.org/10.1038/s12276-018-0190-2
  271. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat vol.43, pp.1, 2013, https://doi.org/10.1080/01913123.2019.1572256
  272. Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2820853
  273. Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration vol.20, pp.1, 2013, https://doi.org/10.2174/1389201020666190206202048
  274. Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5620286
  275. Blended Nanostructured Degradable Mesh with Endometrial Mesenchymal Stem Cells Promotes Tissue Integration and Anti-Inflammatory Response in Vivo for Pelvic Floor Application vol.20, pp.1, 2013, https://doi.org/10.1021/acs.biomac.8b01661
  276. Empowering the immune fate of bone marrow mesenchymal stromal cells: gene and protein changes vol.68, pp.2, 2013, https://doi.org/10.1007/s00011-018-1198-8
  277. Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis vol.9, pp.2, 2019, https://doi.org/10.3390/nano9020261
  278. Novel pharmacotherapy for burn wounds: what are the advancements vol.20, pp.3, 2013, https://doi.org/10.1080/14656566.2018.1551880
  279. Autologous Matrix-Induced Chondrogenesis (AMIC) and AMIC Enhanced by Autologous Concentrated Bone Marrow Aspirate (BMAC) Allow for Stable Clinical and Functional Improvements at up to 9 Years Follow-U vol.8, pp.3, 2013, https://doi.org/10.3390/jcm8030392
  280. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential vol.4, pp.None, 2013, https://doi.org/10.1038/s41536-019-0070-y
  281. Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure vol.5, pp.3, 2013, https://doi.org/10.1021/acsbiomaterials.8b01646
  282. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells vol.11, pp.3, 2019, https://doi.org/10.4252/wjsc.v11.i3.196
  283. Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices vol.36, pp.2, 2019, https://doi.org/10.1007/s10719-019-09858-2
  284. Comparison of The Therapeutic Effect of Syngeneic, Allogeneic, and Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Abortion Rates in A Mouse Model vol.21, pp.1, 2013, https://doi.org/10.22074/cellj.2019.5954
  285. Concise Review: Skeletal Muscle as a Delivery Route for Mesenchymal Stromal Cells vol.8, pp.5, 2013, https://doi.org/10.1002/sctm.18-0208
  286. Mesenchymal Stem Cells-Potential Applications in Kidney Diseases vol.20, pp.10, 2013, https://doi.org/10.3390/ijms20102462
  287. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges vol.8, pp.5, 2013, https://doi.org/10.3390/jcm8050626
  288. Autologous adipose-derived stem cell transplantation enhances healing of wound with exposed bone in a rat model vol.14, pp.5, 2013, https://doi.org/10.1371/journal.pone.0214106
  289. Precisely Controlled Delivery of Abaloparatide through Injectable Hydrogel to Promote Bone Regeneration vol.19, pp.6, 2013, https://doi.org/10.1002/mabi.201900020
  290. 3D and Porous RGDC‐Functionalized Polyester‐Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells vol.19, pp.6, 2013, https://doi.org/10.1002/mabi.201900049
  291. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment vol.28, pp.6, 2019, https://doi.org/10.1111/exd.13954
  292. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases vol.20, pp.12, 2013, https://doi.org/10.3390/ijms20123105
  293. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality vol.14, pp.6, 2013, https://doi.org/10.1371/journal.pone.0218404
  294. Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart vol.10, pp.6, 2013, https://doi.org/10.3390/genes10060474
  295. Serum C-peptide level correlates with the course of muscle tissue healing in the rabbit model of critical limb ischemia vol.163, pp.2, 2019, https://doi.org/10.5507/bp.2018.048
  296. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders vol.13, pp.6, 2013, https://doi.org/10.1021/acsnano.9b01004
  297. Tissue engineering for the pelvic floor vol.29, pp.4, 2013, https://doi.org/10.1097/mou.0000000000000620
  298. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity vol.8, pp.7, 2019, https://doi.org/10.3390/jcm8071025
  299. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies vol.28, pp.7, 2013, https://doi.org/10.1177/0963689719837897
  300. Mesenchymal stem cells: From regeneration to cancer vol.200, pp.None, 2019, https://doi.org/10.1016/j.pharmthera.2019.04.005
  301. Extracellular Vesicles as a Potential Therapy for Neonatal Conditions: State of the Art and Challenges in Clinical Translation vol.11, pp.8, 2013, https://doi.org/10.3390/pharmaceutics11080404
  302. Scalable Manufacturing of Human Mesenchymal Stromal Cells in the Vertical‐Wheel Bioreactor System: An Experimental and Economic Approach vol.14, pp.8, 2013, https://doi.org/10.1002/biot.201800716
  303. CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells vol.129, pp.8, 2019, https://doi.org/10.1172/jci125015
  304. Roles of the Mesenchymal Stromal/Stem Cell Marker Meflin in Cardiac Tissue Repair and the Development of Diastolic Dysfunction vol.125, pp.4, 2013, https://doi.org/10.1161/circresaha.119.314806
  305. Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three‐dimensional collagen hydrogels: Integrating experiments and modelling vol.13, pp.10, 2019, https://doi.org/10.1002/term.2943
  306. New Insights into Immunotherapy Strategies for Treating Autoimmune Diabetes vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194789
  307. A Purification Technique for Adipose-Derived Stromal Cell Cultures Leads to a More Regenerative Cell Population vol.32, pp.5, 2013, https://doi.org/10.1080/08941939.2017.1423420
  308. Meta-Fluors-A Unique Way To Create a 200 Da Ultrasmall Fluorophore Emitting in Red with Intense Stokes/Solvatochromic Shift: Imaging Subcellular Nanopolarity in Live Stem Cells vol.123, pp.40, 2013, https://doi.org/10.1021/acs.jpcc.9b08524
  309. Synthetic biology for improving cell fate decisions and tissue engineering outcomes vol.3, pp.5, 2013, https://doi.org/10.1042/etls20190091
  310. Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies vol.20, pp.11, 2013, https://doi.org/10.1542/neo.20-11-e636
  311. The Role of Growth Hormone in Mesenchymal Stem Cell Commitment vol.20, pp.21, 2013, https://doi.org/10.3390/ijms20215264
  312. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine vol.20, pp.21, 2013, https://doi.org/10.3390/ijms20215386
  313. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review vol.8, pp.11, 2013, https://doi.org/10.1002/sctm.19-0044
  314. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration vol.25, pp.21, 2013, https://doi.org/10.1089/ten.tea.2018.0341
  315. Mesenchymal stem cells, implications for pain therapy vol.14, pp.11, 2013, https://doi.org/10.4103/1673-5374.259615
  316. Bone Marrow Mesenchymal Stem Cell Therapy and Related Bone Marrow-Derived Orthobiologic Therapeutics vol.12, pp.4, 2013, https://doi.org/10.1007/s12178-019-09583-1
  317. MSCs helped reduce scarring in the cornea after fungal infection when combined with anti-fungal treatment vol.19, pp.1, 2019, https://doi.org/10.1186/s12886-019-1235-6
  318. From 3D to 3D: isolation of mesenchymal stem/stromal cells into a three-dimensional human platelet lysate matrix vol.10, pp.1, 2019, https://doi.org/10.1186/s13287-019-1346-2
  319. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? vol.10, pp.1, 2019, https://doi.org/10.1186/s13287-019-1445-0
  320. Osteogenic commitment of Wharton’s jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application vol.10, pp.1, 2013, https://doi.org/10.1186/s13287-019-1450-3
  321. Combination therapies enhance immunoregulatory properties of MIAMI cells vol.10, pp.1, 2013, https://doi.org/10.1186/s13287-019-1515-3
  322. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells vol.28, pp.23, 2019, https://doi.org/10.1089/scd.2019.0070
  323. Exosomes Derived from Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Inhibiting Pyroptosis vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s239546
  324. Stem cell research and therapy in India: General awareness for the public and stem cell therapy providers vol.7, pp.2, 2013, https://doi.org/10.4103/cjhr.cjhr_91_19
  325. Fate of systemically and locally administered adipose‐derived mesenchymal stromal cells and their effect on wound healing vol.9, pp.1, 2020, https://doi.org/10.1002/sctm.19-0091
  326. Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids vol.38, pp.1, 2013, https://doi.org/10.1002/stem.3056
  327. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells vol.38, pp.1, 2013, https://doi.org/10.1002/stem.3061
  328. Comparative Analysis of the Different Dyes' Potential to Assess Human Normal and Cancer Cell Viability In Vitro under Different D / H Ratios in a Culture Medium vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/2373021
  329. Patient-Centered Outcomes of Microfragmented Adipose Tissue Treatments of Knee Osteoarthritis: An Observational, Intention-to-Treat Study at Twelve Months vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/8881405
  330. Copper Does Not Induce Tenogenic Differentiation but Promotes Migration and Increases Lysyl Oxidase Activity in Adipose-Derived Mesenchymal Stromal Cells vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/9123281
  331. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? vol.29, pp.None, 2013, https://doi.org/10.1177/0963689720926154
  332. Human umbilical cord blood-mesenchymal stem cell-derived secretome in combination with atorvastatin enhances endothelial progenitor cells proliferation and migration vol.9, pp.None, 2013, https://doi.org/10.12688/f1000research.23547.2
  333. A Novel Method to Optimize Autologous Adipose Tissue Recovery with Extracellular Matrix Preservation vol.8, pp.1, 2013, https://doi.org/10.3390/pr8010088
  334. Human Amniotic Mesenchymal Stem Cells Promote Endogenous Bone Regeneration vol.11, pp.None, 2013, https://doi.org/10.3389/fendo.2020.543623
  335. Beneficial Effect of Systemic Allogeneic Adipose Derived Mesenchymal Cells on the Clinical, Inflammatory and Immunologic Status of a Patient With Recessive Dystrophic Epidermolysis Bullosa: A Case Rep vol.7, pp.None, 2013, https://doi.org/10.3389/fmed.2020.576558
  336. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine vol.8, pp.None, 2013, https://doi.org/10.3389/fcell.2020.00737
  337. Leukemia Inhibitory Factor (LIF) Overexpression Increases the Angiogenic Potential of Bone Marrow Mesenchymal Stem/Stromal Cells vol.8, pp.None, 2013, https://doi.org/10.3389/fcell.2020.00778
  338. Mesenchymal Stromal Cell-Derived Extracellular Vesicles – Silver Linings for Cartilage Regeneration? vol.8, pp.None, 2013, https://doi.org/10.3389/fcell.2020.593386
  339. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations vol.12, pp.1, 2013, https://doi.org/10.4252/wjsc.v12.i1.1
  340. Platelet‐rich plasma improves the therapeutic efficacy of mesenchymal stem cells by enhancing their secretion of angiogenic factors in a combined radiation and wound injury model vol.29, pp.2, 2013, https://doi.org/10.1111/exd.14042
  341. Recent Advances in Molecular Imaging with Gold Nanoparticles vol.31, pp.2, 2013, https://doi.org/10.1021/acs.bioconjchem.9b00669
  342. Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery vol.16, pp.None, 2013, https://doi.org/10.1016/j.omtm.2020.01.005
  343. Secretome of Senescent Adipose-Derived Mesenchymal Stem Cells Negatively Regulates Angiogenesis vol.21, pp.5, 2020, https://doi.org/10.3390/ijms21051802
  344. Protective Effect of Human Mesenchymal Stem Cells on the Survival of Pancreatic Islets vol.13, pp.1, 2020, https://doi.org/10.15283/ijsc19094
  345. Recent advances in genome editing of stem cells for drug discovery and therapeutic application vol.209, pp.None, 2013, https://doi.org/10.1016/j.pharmthera.2020.107501
  346. Neuroimmune modulation of pain and regenerative pain medicine vol.130, pp.5, 2020, https://doi.org/10.1172/jci134439
  347. Advances in regenerative therapy: A review of the literature and future directions vol.14, pp.None, 2013, https://doi.org/10.1016/j.reth.2020.01.004
  348. Intra‐articular delivery of umbilical cord‐derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model vol.23, pp.6, 2013, https://doi.org/10.1111/1756-185x.13834
  349. Adipose-Derived Stem Cells Promote Intussusceptive Lymphangiogenesis by Restricting Dermal Fibrosis in Irradiated Tissue of Mice vol.21, pp.11, 2013, https://doi.org/10.3390/ijms21113885
  350. Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration vol.9, pp.6, 2020, https://doi.org/10.3390/jcm9061711
  351. Histopathological Signatures of the Femoral Head in Patients with Osteonecrosis and Potential Applications in a Multi-Targeted Approach: A Pilot Study vol.10, pp.11, 2013, https://doi.org/10.3390/app10113945
  352. Site V Surgery for Temporal Migraine Headaches vol.8, pp.6, 2013, https://doi.org/10.1097/gox.0000000000002886
  353. Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury vol.48, pp.9, 2013, https://doi.org/10.1177/0363546520926462
  354. Potential Implantable Nanofibrous Biomaterials Combined with Stem Cells for Subchondral Bone Regeneration vol.13, pp.14, 2013, https://doi.org/10.3390/ma13143087
  355. LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes vol.12, pp.13, 2020, https://doi.org/10.18632/aging.103384
  356. Effects of mesenchymal stem cell and amnion membrane transfer on prevention of pericardial adhesions vol.45, pp.4, 2013, https://doi.org/10.1515/tjb-2019-0309
  357. Cell‐based therapy to reduce mortality from COVID ‐19: Systematic review and meta‐analysis of human studies on acute respiratory distress syndrome vol.9, pp.9, 2013, https://doi.org/10.1002/sctm.20-0146
  358. Adipose stem cells exhibit mechanical memory and reduce fibrotic contracture in a rat elbow injury model vol.34, pp.9, 2013, https://doi.org/10.1096/fj.202001274r
  359. Rationale for the Use of Radiation-Activated Mesenchymal Stromal/Stem Cells in Acute Respiratory Distress Syndrome vol.9, pp.9, 2013, https://doi.org/10.3390/cells9092015
  360. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19 vol.12, pp.9, 2013, https://doi.org/10.4252/wjsc.v12.i9.1013
  361. Aggregation‐induced integrated stress response rejuvenates culture‐expanded human mesenchymal stem cells vol.117, pp.10, 2013, https://doi.org/10.1002/bit.27474
  362. Over-Production of Therapeutic Growth Factors for Articular Cartilage Regeneration by Protein Production Platforms and Protein Packaging Cell Lines vol.9, pp.10, 2013, https://doi.org/10.3390/biology9100330
  363. Preconditioned and Genetically Modified Stem Cells for Myocardial Infarction Treatment vol.21, pp.19, 2013, https://doi.org/10.3390/ijms21197301
  364. Injectable Biologics : What Is the Evidence? vol.99, pp.10, 2013, https://doi.org/10.1097/phm.0000000000001407
  365. Effects of Oxygen and Glucose on Bone Marrow Mesenchymal Stem Cell Culture vol.4, pp.11, 2013, https://doi.org/10.1002/adbi.202000094
  366. Osteoinductive Properties of Secretome of Human Mesenchymal Stem Cells, Obtained with Automatic Cell Culture System vol.14, pp.6, 2013, https://doi.org/10.1134/s1990519x20060024
  367. MicroRNA: Potential biomarker and target of therapy in acute lung injury vol.39, pp.11, 2013, https://doi.org/10.1177/0960327120926254
  368. The modulation of mature dendritic cells from patients with type 1 diabetes using human periodontal ligament stem cells. An in-vitro study vol.19, pp.2, 2013, https://doi.org/10.1007/s40200-020-00602-4
  369. Autologous Adipose Orthobiologic Cell Therapy Harvest Technique vol.28, pp.4, 2013, https://doi.org/10.1016/j.otsm.2020.150778
  370. Biothérapies pour les troubles de l’érection et la maladie de la Peyronie : ou en est-on ? vol.30, pp.16, 2013, https://doi.org/10.1016/j.purol.2020.05.002
  371. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration vol.15, pp.None, 2013, https://doi.org/10.1016/j.reth.2020.11.002
  372. Effect of the deuterium on efficiency and type of adipogenic differentiation of human adipose-derived stem cells in vitro vol.10, pp.None, 2013, https://doi.org/10.1038/s41598-020-61983-3
  373. The voltage-gated proton channel hHv1 is functionally expressed in human chorion-derived mesenchymal stem cells vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-63517-3
  374. Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics vol.10, pp.1, 2013, https://doi.org/10.1038/s41598-020-73428-y
  375. Injections of concentrated bone marrow aspirate as treatment for Discogenic pain: a retrospective analysis vol.21, pp.None, 2013, https://doi.org/10.1186/s12891-020-3126-7
  376. A multicenter experience using adipose-derived mesenchymal stem cell therapy for cats with chronic, non-responsive gingivostomatitis vol.11, pp.1, 2013, https://doi.org/10.1186/s13287-020-01623-9
  377. Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury vol.11, pp.1, 2013, https://doi.org/10.1186/s13287-020-01922-1
  378. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p vol.11, pp.1, 2013, https://doi.org/10.1186/s13287-020-1550-0
  379. Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2 vol.21, pp.24, 2020, https://doi.org/10.3390/ijms21249726
  380. Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action vol.262, pp.None, 2013, https://doi.org/10.1016/j.lfs.2020.118493
  381. Innovative Strategy Toward Red Emission: Single-Benzenic, Ultrasmall meta-Fluorophores vol.124, pp.49, 2013, https://doi.org/10.1021/acs.jpcc.0c09106
  382. Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits vol.10, pp.1, 2013, https://doi.org/10.1302/2046-3758.101.bjr-2020-0249.r1
  383. Human placenta-derived stem cells - recent findings based on the molecular science vol.8, pp.4, 2020, https://doi.org/10.2478/acb-2020-0021
  384. Comparison of the treatment results of knee osteoarthritis using adipose tissue mesenchymal stromal cells derived through enzymatic digestion and mechanically fragmented adipose tissue vol.100, pp.9, 2013, https://doi.org/10.1097/md.0000000000024777
  385. Evaluation of Potential Application of Wharton’s Jelly-Derived Human Mesenchymal Stromal Cells and its Conditioned Media for Dermal Regeneration using Rat Wound Healing Model vol.210, pp.1, 2013, https://doi.org/10.1159/000513895
  386. Autologous Infusion of Bone Marrow and Mesenchymal Stromal Cells in Patients with Chronic Obstructive Pulmonary Disease: Phase I Randomized Clinical Trial vol.16, pp.None, 2021, https://doi.org/10.2147/copd.s332613
  387. Chronic Inflammation and Radiation-Induced Cystitis: Molecular Background and Therapeutic Perspectives vol.10, pp.1, 2013, https://doi.org/10.3390/cells10010021
  388. The Clinical Trials of Mesenchymal Stromal Cells Therapy vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/1634782
  389. Mesenchymal Stem Cells: An Overview of Their Potential in Cell-Based Therapy for Diabetic Nephropathy vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6620811
  390. Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Ost vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6694299
  391. Intrathecal Transplantation of Autologous and Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Dogs vol.30, pp.None, 2013, https://doi.org/10.1177/09636897211034464
  392. c-Casitas b-Lineage Lymphoma Downregulation Improves the Ability of Long-term Cultured Mesenchymal Stem Cells for Promoting Angiogenesis and Diabetic Wound Healing vol.30, pp.None, 2021, https://doi.org/10.1177/0963689721989605
  393. Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications vol.12, pp.None, 2013, https://doi.org/10.1177/2041731420983562
  394. Selective Retention of Bone Marrow Stromal Cells with Gelatin Sponge for Repair of Intervertebral Disc Defects after Microendoscopic Discectomy: A Prospective Controlled Study and 2-Year Follow-Up vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4822383
  395. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance vol.12, pp.None, 2013, https://doi.org/10.3389/fimmu.2021.622604
  396. Cell Interplay in Osteoarthritis vol.9, pp.None, 2013, https://doi.org/10.3389/fcell.2021.720477
  397. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy vol.9, pp.None, 2013, https://doi.org/10.3389/fcell.2021.731393
  398. Enhancing Cystic Fibrosis Immune Regulation vol.12, pp.None, 2013, https://doi.org/10.3389/fphar.2021.573065
  399. Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases vol.12, pp.None, 2013, https://doi.org/10.3389/fphar.2021.645558
  400. Immuno-comparative screening of adult-derived human liver stem/progenitor cells for immune-inflammatory-associated molecules vol.70, pp.2, 2013, https://doi.org/10.1007/s00011-020-01428-9
  401. Human umbilical cord perivascular cells prevent chemotherapeutic drug-induced male infertility in a mouse model vol.2, pp.1, 2013, https://doi.org/10.1016/j.xfss.2020.12.002
  402. Mesenchymal Stem Cells Transplantation in Intracerebral Hemorrhage: Application and Challenges vol.15, pp.None, 2013, https://doi.org/10.3389/fncel.2021.653367
  403. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering vol.14, pp.2, 2013, https://doi.org/10.14202/vetworld.2021.508-514
  404. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation vol.9, pp.5, 2021, https://doi.org/10.1039/d0tb01933j
  405. Dental pulp-derived stem cell-conditioned media attenuates secondary Sjögren's syndrome via suppression of inflammatory cytokines in the submandibular glands vol.16, pp.None, 2013, https://doi.org/10.1016/j.reth.2021.01.006
  406. OSTEOIMMUNOLOGICAL IMPLICATIONS IN REGENERATIVE MEDICINE: CROSS-TALK BETWEEN MESENCHYMAL STEM CELLS AND IMMUNE CELLS vol.24, pp.1, 2013, https://doi.org/10.1142/s0218957721400017
  407. Five-Year Outcome of 1-Stage Cell-Based Cartilage Repair Using Recycled Autologous Chondrons and Allogenic Mesenchymal Stromal Cells: A First-in-Human Clinical Trial vol.49, pp.4, 2013, https://doi.org/10.1177/0363546520988069
  408. Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee vol.22, pp.5, 2021, https://doi.org/10.3390/ijms22052666
  409. Extracellular Vesicles from Mesenchymal Stromal Cells for the Treatment of Inflammation-Related Conditions vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22063023
  410. The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery vol.11, pp.3, 2013, https://doi.org/10.3390/jpm11030161
  411. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis vol.21, pp.3, 2013, https://doi.org/10.1080/14712598.2021.1862790
  412. Cell Surface Glycoprotein CD24 Marks Bone Marrow-Derived Human Mesenchymal Stem/Stromal Cells with Reduced Proliferative and Differentiation Capacity In Vitro vol.30, pp.6, 2013, https://doi.org/10.1089/scd.2021.0027
  413. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches vol.41, pp.4, 2013, https://doi.org/10.1038/s41372-021-01022-9
  414. Endobronchial autologous bone marrow-mesenchymal stromal cells in idiopathic pulmonary fibrosis: a phase I trial vol.7, pp.2, 2013, https://doi.org/10.1183/23120541.00773-2020
  415. The Chromatin Remodeling Complex CHD1 Regulates the Primitive State of Mesenchymal Stromal Cells to Control Their Stem Cell Supporting Activity vol.30, pp.7, 2013, https://doi.org/10.1089/scd.2020.0166
  416. Protecting islet functional viability using mesenchymal stromal cells vol.10, pp.5, 2013, https://doi.org/10.1002/sctm.20-0466
  417. The Role of Gap Junctions in Endothelial-Stromal Cell Interactions vol.47, pp.3, 2021, https://doi.org/10.1134/s036211972103004x
  418. Intra-Articular Administration of Autologous Purified Adipose Tissue Associated with Arthroscopy Ameliorates Knee Osteoarthritis Symptoms vol.10, pp.10, 2013, https://doi.org/10.3390/jcm10102053
  419. Novel cell sources for bone regeneration vol.2, pp.2, 2013, https://doi.org/10.1002/mco2.51
  420. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine vol.22, pp.2, 2013, https://doi.org/10.1007/s10561-020-09885-6
  421. Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity vol.18, pp.3, 2013, https://doi.org/10.1007/s13770-021-00352-1
  422. Simulated Microgravity Remodels Extracellular Matrix of Osteocommitted Mesenchymal Stromal Cells vol.22, pp.11, 2013, https://doi.org/10.3390/ijms22115428
  423. Liposomes as multifaceted delivery system in the treatment of osteoporosis vol.18, pp.6, 2013, https://doi.org/10.1080/17425247.2021.1867534
  424. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function vol.10, pp.7, 2013, https://doi.org/10.1002/sctm.20-0303
  425. A Prospective Study Comparing Leukocyte-Poor Platelet-Rich Plasma Combined with Hyaluronic Acid and Autologous Microfragmented Adipose Tissue in Patients with Early Knee Osteoarthritis vol.30, pp.13, 2013, https://doi.org/10.1089/scd.2021.0053
  426. Donor‐defined mesenchymal stem cell antimicrobial potency against nontuberculous mycobacterium vol.10, pp.8, 2013, https://doi.org/10.1002/sctm.20-0521
  427. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles vol.10, pp.8, 2021, https://doi.org/10.3390/cells10081872
  428. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice vol.10, pp.8, 2013, https://doi.org/10.3390/cells10081925
  429. IGF-1-Expressing Placenta-Derived Mesenchymal Stem Cells Promote Scalding Wound Healing vol.265, pp.None, 2021, https://doi.org/10.1016/j.jss.2021.02.057
  430. A genome-engineered bioartificial implant for autoregulated anticytokine drug delivery vol.7, pp.36, 2021, https://doi.org/10.1126/sciadv.abj1414
  431. Perspective: Why and How Ubiquitously Distributed, Vascular-Associated, Pluripotent Stem Cells in the Adult Body (vaPS Cells) Are the Next Generation of Medicine vol.10, pp.9, 2013, https://doi.org/10.3390/cells10092303
  432. Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092323
  433. Mesenchymal Stromal Cells: Potential Option for COVID-19 Treatment vol.13, pp.9, 2013, https://doi.org/10.3390/pharmaceutics13091481
  434. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials vol.22, pp.19, 2013, https://doi.org/10.3390/ijms221910586
  435. Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium vol.22, pp.19, 2013, https://doi.org/10.3390/ijms221910885
  436. Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials vol.5, pp.10, 2021, https://doi.org/10.3390/jcs5100278
  437. Autologous Bone Marrow Mononuclear Cells (BMMCs) for the Treatment of Uncomplicated Grade 2 Ununited Anconeal Process (UAP) in Six Dogs: Preliminary Results vol.8, pp.10, 2013, https://doi.org/10.3390/vetsci8100214
  438. A New Role for Extracellular Vesicles in Cardiac Tissue Engineering and Regenerative Medicine vol.1, pp.11, 2021, https://doi.org/10.1002/anbr.202100047
  439. Inflammation, a common mechanism in frailty and COVID‐19 , and stem cells as a therapeutic approach vol.10, pp.11, 2013, https://doi.org/10.1002/sctm.21-0074
  440. COVID-19: The Impact on Cardiovascular System vol.9, pp.11, 2021, https://doi.org/10.3390/biomedicines9111691
  441. Biomimetic immunomodulation strategies for effective tissue repair and restoration vol.179, pp.None, 2013, https://doi.org/10.1016/j.addr.2021.113913
  442. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine vol.6, pp.1, 2013, https://doi.org/10.1038/s41392-021-00688-z
  443. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models vol.12, pp.1, 2013, https://doi.org/10.1038/s41467-021-23238-1
  444. Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy vol.22, pp.24, 2013, https://doi.org/10.3390/ijms222413581
  445. Systemic Treatment of Immune-Mediated Keratoconjunctivitis Sicca with Allogeneic Stem Cells Improves the Schirmer Tear Test Score in a Canine Spontaneous Model of Disease vol.10, pp.24, 2013, https://doi.org/10.3390/jcm10245981
  446. Cell-based therapies for the treatment of sports injuries of the upper limb vol.21, pp.12, 2021, https://doi.org/10.1080/14712598.2021.1928630