DOI QR코드

DOI QR Code

Synthesis of $LaCoO_3$ nanoparticles by microwave process and their photocatalytic activity under visible light irradiation

  • Jung, Won Young (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Published : 2013.01.25

Abstract

We have investigated the photocatalytic activity for the decomposition of methyl orange on the $LaCoO_3$ perovskite-type oxides prepared at different conditions using microwave process. In the case of $LaCoO_3$ catalysts calcined above $500^{\circ}C$, the formation of the perovskite crystalline phase was confirmed. From the results of UV-Vis DRS, all the catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better the performance of photocatalyst.

Keywords

References

  1. F.T. Li, D.S. Zhao, Q.Z. Luo, R.H. Liu, R. Yin, Journal of Ceramic Processing Research 9 (2008) 398.
  2. X. Niu, H. Li, G. Liu, Journal of Molecular Catalysis 232 (2005) 89. https://doi.org/10.1016/j.molcata.2005.01.022
  3. T. Ji, F. Yang, Y. Lv, J. Zhou, J. Sun, Journal of Materials Letters 63 (2009) 2044. https://doi.org/10.1016/j.matlet.2009.06.043
  4. T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Applied Catalysis A 288 (2005) 74. https://doi.org/10.1016/j.apcata.2005.04.035
  5. J. Li, Z. Wei, Nanoscience 12 (2007) 20.
  6. R.J. Bell, G.J. Millar, J. Drennan, Solid State Ionics 131 (2000) 211. https://doi.org/10.1016/S0167-2738(00)00668-8
  7. S. Cimino, R. Pirone, L. Lisi, Applied Catalysis B 35 (2002) 243. https://doi.org/10.1016/S0926-3373(01)00262-4
  8. J. Ding, X. Lu, H. Shu, J. Xie, H. Zhang, Materials Science and Engineering B 171 (2010) 31. https://doi.org/10.1016/j.mseb.2010.03.050
  9. D.J. Anderson, F.R. Sale, Powder Metallurgy 21 (1979) 14.
  10. G.H. Jonker, J.H. Van Santen, Physica 19 (1953) 120. https://doi.org/10.1016/S0031-8914(53)80011-X
  11. B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1978.
  12. N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadus, Applied Surface Science 253 (2006) 1489. https://doi.org/10.1016/j.apsusc.2006.02.035
  13. W.Y. Jung, G.D. Lee, S.S. Park, K.T. Lim, M.S. Lee, S.S. Hong, Journal of Nanoscience and Nanotechnology 11 (2011) 7446. https://doi.org/10.1166/jnn.2011.4765
  14. G. Heinz, H. Adam, Journal of Physical Chemistry 95 (1991) 5261. https://doi.org/10.1021/j100166a063
  15. M. Cherry, M.S. Islam, C.R.A. Catlow, Journal of Solid State Chemistry 118 (1995) 125. https://doi.org/10.1006/jssc.1995.1320
  16. F. Li, Y. Liu, R. Liu, Z. Sun, D. Zhao, C. Kou, Materials Letters 64 (2010) 223. https://doi.org/10.1016/j.matlet.2009.10.048

Cited by

  1. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3Nanoparticles vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/164380
  2. 혼합 금속산화물 촉매에서 글리세롤의 수소화 분해반응을 통한 프로필렌 글리콜의 합성 vol.20, pp.1, 2013, https://doi.org/10.7464/ksct.2014.20.1.007
  3. Dynamic Response of CoSb 2 O 6 Trirutile-Type Oxides in a CO 2 Atmosphere at Low-Temperatures vol.14, pp.9, 2013, https://doi.org/10.3390/s140915802
  4. Glycerol steam reforming over La–Ce–Co mixed oxide-derived cobalt catalysts vol.5, pp.56, 2013, https://doi.org/10.1039/c5ra02837j
  5. Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation vol.140, pp.None, 2013, https://doi.org/10.1016/j.fuel.2014.09.107
  6. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment vol.44, pp.15, 2015, https://doi.org/10.1039/c5cs00113g
  7. 마이크로파 공정으로 제조된 PbMoO4 산화물에서 Rhodamine B의 광촉매 분해 반응 vol.21, pp.3, 2015, https://doi.org/10.7464/ksct.2015.21.3.178
  8. 수열합성법에 의한 PbMo1-xCrxO4 산화물의 합성 및 광촉매 활성 vol.26, pp.6, 2013, https://doi.org/10.14478/ace.2015.1103
  9. Three-dimensionally Hierarchical Bi2WO6 Architectures with Enhanced Photocatalytic Activity vol.11, pp.12, 2013, https://doi.org/10.1142/s1793292016501356
  10. Inorganic perovskite photocatalysts for solar energy utilization vol.45, pp.21, 2013, https://doi.org/10.1039/c5cs00769k
  11. Graphene quantum dots /LaCoO3/attapulgite heterojunction photocatalysts with improved photocatalytic activity vol.123, pp.4, 2013, https://doi.org/10.1007/s00339-017-0907-4
  12. The Effect of Solvent on the Synthesis of BiVO4 Using Solvothermal Method and Their Photocatalytic Activity Under Visible Light Irradiation vol.60, pp.9, 2017, https://doi.org/10.1007/s11244-017-0770-8
  13. Porous NiO–WO3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties vol.7, pp.64, 2017, https://doi.org/10.1039/c7ra07663k
  14. Synthesis and characterization of La0.95Ce0.05CoO3 at different calcination temperatures vol.850, pp.None, 2013, https://doi.org/10.1088/1742-6596/850/1/012020
  15. Microwave-Assisted Synthesis, Microstructure, and Magnetic Properties of Rare-Earth Cobaltites vol.56, pp.1, 2013, https://doi.org/10.1021/acs.inorgchem.6b02557
  16. 알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.718
  17. Photocatalytic Decomposition of Rhodamine B on PbMoO4 Using a Surfactant-assisted Hydrothermal Method vol.24, pp.3, 2013, https://doi.org/10.7464/ksct.2018.24.3.206
  18. Ultraviolet Detection and Photocatalytic Activity of Nanostructured LaCoO3 Prepared by Solution-Polymerization vol.8, pp.2, 2013, https://doi.org/10.1149/2.0111902jss
  19. Novel UV Sensing and Photocatalytic Properties of DyCoO3 vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/5682645
  20. 수열합성법으로 제조된 Bi2MoO6에서 로다민 B의 광촉매 분해 반응 vol.25, pp.2, 2013, https://doi.org/10.7464/ksct.2019.25.2.121
  21. Alternative pathways to α,β-unsaturated ketones via direct oxidative coupling transformation using Sr-doped LaCoO 3 perovskite catalyst vol.6, pp.11, 2013, https://doi.org/10.1098/rsos.191313
  22. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis vol.10, pp.None, 2013, https://doi.org/10.1021/acscatal.0c02947
  23. Facile and rapid synthesis of a novel spindle-like heterojunction BiVO4 showing enhanced visible-light-driven photoactivity vol.10, pp.9, 2013, https://doi.org/10.1039/c9ra07891f
  24. Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light vol.39, pp.2, 2013, https://doi.org/10.1007/s12598-019-01329-9
  25. 수열합성법에 의한 Bi2WO6의 합성 및 그들의 광촉매 활성 vol.58, pp.2, 2020, https://doi.org/10.9713/kcer.2020.58.2.313
  26. Lanthanum‐Based Perovskites for Catalytic Oxygen Evolution Reaction vol.7, pp.15, 2013, https://doi.org/10.1002/celc.202000451
  27. Synthesis of Novel Ternary Dual Z-scheme AgBr/LaNiO 3 /g-C 3 N 4 Composite with Boosted Visible-Light Photodegradation of Norfloxacin vol.25, pp.16, 2013, https://doi.org/10.3390/molecules25163706
  28. A review on the application of perovskite as peroxymonosulfate activator for organic pollutants removal vol.10, pp.1, 2013, https://doi.org/10.1016/j.jece.2021.107093