DOI QR코드

DOI QR Code

Characterization of $MoO_3-V_2O_5/Al_2O_3$ catalysts for selective catalytic reduction of NO by $NH_3$

  • Published : 2013.01.25

Abstract

$MoO_3-V_2O_5/Al_2O_3$ catalysts were characterized by B.E.T., XRD, LRS, XPS and TPR and the effect of $MoO_3$ addition to alumina supported vanadia catalysts on the catalytic activity for the selective catalytic reduction of NO by ammonia was investigated. Upon the addition of $MoO_3$, catalytic activity was enhanced and the particle size of $V_2O_5$ which is shown by the results of B.E.T., XRD and Raman spectroscopy decreased. This was one reason for increased catalytic activity. The results obtained by XPS and TPR showed that $MoO_3$ addition to alumina supported vanadia catalysts increased the reducibility of vanadia and this was the another reason for synergy effect between $MoO_3$ and $V_2O_5$ in $MoO_3-V_2O_5/Al_2O_3$ catalysts.

Keywords

References

  1. M.A.L. Vargas, M. Casanova, A. Trovarelli, G. Busca, Applied Catalysis B: Environmental 75 (2007) 303. https://doi.org/10.1016/j.apcatb.2007.04.022
  2. L. Lietti, I. Nova, G. Ramis, G. Busca, E. Giamello, P. Forzatti, F. Bregani, Journal of Catalysis 187 (1999) 419. https://doi.org/10.1006/jcat.1999.2603
  3. Z. Si, D. Weng, X. Wu, J. Li, G. Li, Journal of Catalysis 271 (2010) 43. https://doi.org/10.1016/j.jcat.2010.01.025
  4. L. Lietti, P. Forzatii, F. Bregani, Industrial and Engineering Chemistry Research 35 (1996) 3884. https://doi.org/10.1021/ie960158l
  5. M. Kobayashi, K. Miyoshi, Applied Catalysis B: Environmental 72 (2007) 253. https://doi.org/10.1016/j.apcatb.2006.11.007
  6. L. Lietti, I. Nova, G. Ramis, L. Dall'Acqua, G. Busca, E. Giamell, P. Fozatti, F. Bregani, Journal of Catalysis 187 (1999) 419. https://doi.org/10.1006/jcat.1999.2603
  7. G.B. Busca, L. Lietti, G. Ramis, F. Berti, Applied Catalysis B: Environmental 18 (1998) 1. https://doi.org/10.1016/S0926-3373(98)00040-X
  8. L. Casagrande, L. Lietti, I. Nova, P. Forzatti, A. Baiker, Applied Catalysis B: Environmental 22 (1999) 63. https://doi.org/10.1016/S0926-3373(99)00035-1
  9. L. Lietti, G. Ramis, F. Berti, G. Toledo, D. Robba, G.B. usca, P. Fozatti, Catalysis Today 187 (1999) 419. https://doi.org/10.1006/jcat.1999.2603
  10. G.E. Marnellos, E.A. Efthimiadis, I.A. Vasalos, Applied Catalysis B: Environmental 48 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.09.011
  11. I. Nam, J.W. Eldrige, J.R. Kittrel, Industrial & Engineering Chemistry Product Research and Development 25 (1986) 192.
  12. H.K. Matralis, M. Ciardelli, M. Ruwet, P. Grange, Journal of Catalysis 157 (1995) 368. https://doi.org/10.1006/jcat.1995.1302
  13. V.M. Mastikhin, V.V. Terskikh, O.B. Lapina, M. Seidl, H. Knozinger, Journal of Catalysis 156 (1995) 1. https://doi.org/10.1006/jcat.1995.1225
  14. S. Okazaki, M. Kumasaka, J. Yoshida, K. Kosaka, Industrial & Engineering Chemistry Product Research and Development 20 (1981) 301. https://doi.org/10.1021/i300002a013
  15. G.T. Went, L. Leu, A.T. Bell, Journal of Catalysis 134 (1992) 479. https://doi.org/10.1016/0021-9517(92)90336-G
  16. L. Lietti, P. Forzatti, Journal of Catalysis 147 (1994) 241. https://doi.org/10.1006/jcat.1994.1135
  17. T. Kim, A. Burrows, C.J. Kiely, I.E. Wachs, Journal of Catalysis 246 (2007) 370. https://doi.org/10.1016/j.jcat.2006.12.018
  18. I.E. Wachs, Journal of Catalysis 124 (1990) 570. https://doi.org/10.1016/0021-9517(90)90206-Y
  19. G. Centi, D. Pinelli, F. Ghoussoub, M. Guelton, L. Gengembre, Journal of Catalysis 130 (1991) 238. https://doi.org/10.1016/0021-9517(91)90107-F
  20. M.C. Paganini, L.D. Acqua, E.G.L. Lietti, P. Forzatti, G. Busca, Journal of Catalysis 166 (1997) 195. https://doi.org/10.1006/jcat.1997.1492
  21. M. Inomata, K. Mori, A. Miyamoto, Y. Murakami, Journal of Physical Chemistry 87 (1983) 761. https://doi.org/10.1021/j100228a014
  22. G. Clarebout, M. Ruwet, H. Matralis, P. Grange, Applied Catalysis 76 (1991) L9. https://doi.org/10.1016/0166-9834(91)80043-V

Cited by

  1. Design Strategies for P-Containing Fuels Adaptable CeO2–MoO3 Catalysts for DeNOx: Significance of Phosphorus Resistance and N2 Selectivity vol.47, pp.20, 2013, https://doi.org/10.1021/es4022014
  2. New insight into the promotion effect of Cu doped V2O5/WO3–TiO2 for low temperature NH3-SCR performance vol.5, pp.44, 2013, https://doi.org/10.1039/c5ra04940g
  3. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst vol.65, pp.4, 2013, https://doi.org/10.1080/10962247.2014.1002584
  4. Dual resistance to alkali metals and SO2: vanadium and cerium supported on sulfated zirconia as an efficient catalyst for NH3-SCR vol.6, pp.22, 2013, https://doi.org/10.1039/c6cy01502f
  5. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1 vol.90, pp.1, 2013, https://doi.org/10.1134/s0036024416010180
  6. Deactivation by HCl of CeO2-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3 vol.8, pp.32, 2013, https://doi.org/10.1039/c8ra00280k
  7. Influence of calcination temperature on the plate-type V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO vol.124, pp.2, 2013, https://doi.org/10.1007/s11144-018-1378-0
  8. Synthesis of CoAl2O4/CuFe2O4/CeO2/TiO2 Ceramic Nanocomposite as a Catalyst for Selective Catalytic Reduction of NO by NH3: vol.79, pp.4, 2013, https://doi.org/10.1080/0371750x.2020.1801516
  9. Unveiling the contribution of Mo, V and W oxides to coking in catalytic glycerol oxidehydration vol.516, pp.None, 2013, https://doi.org/10.1016/j.mcat.2021.111969
  10. Improvement of Al2O3 on the multi-pollutant control performance of NOx and chlorobenzene in vanadia-based catalysts vol.289, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2021.133156