DOI QR코드

DOI QR Code

Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole

  • Yun, Dae-Hee (Department of Iindustrial Chemistry, Sangmyung University) ;
  • Yoo, Han-Sol (Department of Iindustrial Chemistry, Sangmyung University) ;
  • Heo, Soo-Won (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Song, Ho-Jun (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Moon, Doo-Kyung (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Woo, Je-Wan (Department of Iindustrial Chemistry, Sangmyung University) ;
  • Park, Yong-Sung (Department of Iindustrial Chemistry, Sangmyung University)
  • Published : 2013.03.25

Abstract

In this study, poly [(N-10'-dodecyl-phenothizin-3,7-ylene)-alt-(2,2'-bithiophen-5-yl)] (P1) and poly [(N-10'-dodecyl-phenothiazin-3,7-ylene)-alt-(5',6'-dioctyloxy-benzothiadiazole-bithiophene)] (P2) were synthesized by Suzuki coupling reaction. Optical and electrochemical characteristics of the synthesized polymers, P1 and P2, were then analyzed, indicating that their wavelength of maximum absorption was 453 nm and 533 nm, respectively, and their band-gap was 1.93 eV and 1.74 eV, respectively. The maximum power conversion efficiency (PCE) of organic photovoltaic cells created by using P1 and P2 were 0.74% (P1:$PC_{71}BM$ = 1:4,w/w) and 1.00% (P2:$PC_{71}BM$ = 1:3,w/w), respectively, and the short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device were 3.5 mA/$cm^2$, 31.8%, and 0.68 V, respectively, for P1 and 3.9 mA/$cm^2$, 32.7%, and 0.78 V, respectively, for P2.

Keywords

References

  1. J.Y. Lee, S.H. Kim, I.S. Song, D.K. Moon, Journal of Materials Chemistry 21 (2011) 16480-16487. https://doi.org/10.1039/c1jm12145f
  2. J.Y. Lee, K.W. Song, H.J. Song, D.K. Moon, Synthetic Metals 161 (2011) 2434-2440. https://doi.org/10.1016/j.synthmet.2011.09.021
  3. J.Y. Lee, K.W. Song, J.R. Ku, T.H. Sung, D.K. Moon, Solar Energy Materials & Solar Cells 95 (2011) 3377-3384. https://doi.org/10.1016/j.solmat.2011.07.033
  4. Y. Li, Y. Zou, Advanced Materials 20 (2008) 2952-2958. https://doi.org/10.1002/adma.200800606
  5. Y. Li, L. Nue, H. Li, Z. Li, B. Xu, S. Wen, W. Tian, Macromolecules 42 (2009) 4491- 4499. https://doi.org/10.1021/ma900623p
  6. I.S. Song, S.W. Heo, J.Y. Lee, D.K. Moon, Journal of Industrial and Engineering Chemistry 17 (2011) 651-656. https://doi.org/10.1016/j.jiec.2011.02.005
  7. H.J. Song, S.M. Lee, J.Y. Lee, B.H. Chio, D.K. Moon, Synthetic Metals 161 (2011) 2451-2459. https://doi.org/10.1016/j.synthmet.2011.09.026
  8. H.J. Song, J.Y. Lee, I.S. Song, D.K. Moon, J.R. Haw, Journal of Industrial and Engineering Chemistry 17 (2011) 352-357. https://doi.org/10.1016/j.jiec.2011.02.038
  9. S. Yamada, S.J. Park, S.H. Song, M.H. Heo, J.Y. Shim, Y.E. Jin, I. Kim, H.S. Lee, K.M. Lee, K. Yoshinaga, J.Y. Kim, H.S. Suh, Polymers 51 (2010) 6174-6181. https://doi.org/10.1016/j.polymer.2010.10.061
  10. M.J. Park, J.H. Lee, J.H. Park, S.K. Lee, J.I. Lee, H.Y. Chu, D.H. Hwang, H.K. Shim, Macromolecules 41 (2008) 3063-3070. https://doi.org/10.1021/ma702743d
  11. J.H. Kim, Y.H. Seo, W.H. Lee, Y.T. Hong, S.K. Lee, W.S. Shin, S.J. Moon, I.N. Kang, Synthetic Metals 161 (2011) 72-78. https://doi.org/10.1016/j.synthmet.2010.10.036
  12. M.S. Jung, W. Shin, S.J. Park, H.R. You, J.B. Park, H.S. Suh, Y.H. Lim, D.Y. Yoon, J.H. Kim, Synthetic Metals 159 (2009) 1928-1933. https://doi.org/10.1016/j.synthmet.2009.05.034
  13. Y. Zou, W. Wu, G. Sang, Y. Yang, Y. Liu, Y. Li, Macromolecules 40 (2007) 7231-7237. https://doi.org/10.1021/ma071402v
  14. R. Mondal, H.A. Becerril, E. Verploegen, D.W. Kim, J.E. Norton, S.W. Ko, N. Miyaki, S.J. Lee, M.F. Toney, J.L. Bredas, M.D. McGehee, W. Bao, Journal of Materials Chemistry 20 (2010) 5823-5834. https://doi.org/10.1039/c0jm00903b
  15. C.G. Kim, J.R. Quinn, A. Facchetti, T.J. Marks, Advanced Materials 22 (2010) 342-346. https://doi.org/10.1002/adma.200902365
  16. J. Zou, H.L. Yip, S.K. Hau, A.K.Y. Jen, Applied Physics Letters 96 (2010) 203301. https://doi.org/10.1063/1.3394679
  17. W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Advanced Materials 23 (2011) 1910-2905.
  18. S.W. Heo, J.Y. Lee, H.J. Song, J.R. Ku, D.K. Moon, Solar Energy Materials & Solar Cells 95 (2011) 3041-3046.
  19. S.W. Heo, K.W. Song, M.H. Choi, T.H. Sung, D.K. Moon, Solar Energy Materials & Solar Cells 95 (2011) 3564-3572. https://doi.org/10.1016/j.solmat.2011.09.012
  20. C.J. Brabec, J.A. Hauch, P. Schilinsky, C. Waldauf, MRS Bulletin 30 (2005) 50. https://doi.org/10.1557/mrs2005.10
  21. W.P. Su, J.R. Schrieffer, A.J. Heeger, Physical Review Letters 42 (1979) 1698. https://doi.org/10.1103/PhysRevLett.42.1698
  22. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Reviews of Modern Physics 60 (1988) 781. https://doi.org/10.1103/RevModPhys.60.781
  23. J.T. Devreese, R.P. Evrard, V.E. van Doren (Eds.), Highly Conducting One-dimensional Solids, Plenum, New York, 1979.
  24. Y.Y. Liang, T. Wu, D.Q. Feng, S.T. Tsai, H.J. Son, G. Li, L.P. Yu, Journal of the American Chemical Society 131 (2009) 56-57. https://doi.org/10.1021/ja808373p
  25. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Mature Materials 6 (2007) 497-500.
  26. Y. Liang, D. Feng, U. Wu, S.T. Tsai, G. Li, C. Ray, L. Yu, Journal of the American Chemical Society 131 (2009) 7792. https://doi.org/10.1021/ja901545q
  27. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nature Photonics 3 (2009) 297. https://doi.org/10.1038/nphoton.2009.69
  28. J. Hou, H.-Y. Chen, S. Zhang, R.I. Chem, Y. Yang, Y. Wu, G. Li, Journal of the American Chemical Society 131 (2009) 15586-15587. https://doi.org/10.1021/ja9064975
  29. J. Hou, H.-Y. Chen, S. Zhang, G. Li, Y. Yang, Journal of the American Chemical Society 130 (2008) 16144-16145. https://doi.org/10.1021/ja806687u
  30. E. Bundgaard, O. Hagemann, M. Manceau, M. Jorgensen, F.C. Krebs, Macromolecules 43 (2010) 8115-8120. https://doi.org/10.1021/ma1015903
  31. C.B. Nielsen, B.C. Schroeder, A. Hadipour, B.P. Rand, S.E. Watkins, L. McCulloch, Journal of Materials Chemistry 21 (2011) 17642-17645. https://doi.org/10.1039/c1jm13393d
  32. L.M. Campos, A. Tontcheva, S. Gunes, G. Sonmez, H. Neugebauer, N.S. Sariciftci, F. Wudl, Chemistry of Materials 17 (2005) 1033-4031.
  33. E. Bundgaard, F.C. Krebs, Solar Energy Materials & Solar Cells 91 (2007) 954-985. https://doi.org/10.1016/j.solmat.2007.01.015
  34. J.H. Kim, D.B. Mi, I.N. Kang, W.S. Shin, S.C. Yoon, S.J. Moon, C.J. Lee, J.K. Lee, D.H. Hwang, Journal of Nanoscience and Nanotechnology 11 (2011) 5876-5882. https://doi.org/10.1166/jnn.2011.4505
  35. Z. Xie, A. Midya, K.P. Loh, S. Adams, D.J. Blackwood, J. Wang, X. Zhang, Z. Chen, Progress in Photovoltaics: Research and Application 18 (2010) 573-581. https://doi.org/10.1002/pip.980
  36. H. Padhy, J.H. Huang, D. Sahu, D. Patra, D. Kekuda, C.W. Chu, H.C. Lin, Journal of Polymer Science Part A: Polymer Chemistry 48 (2010) 4823-4834. https://doi.org/10.1002/pola.24273
  37. D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang, H. Meier, Organic Letters 13 (2011) 1610-1613. https://doi.org/10.1021/ol2000167
  38. J.F. Yin, J.G. Chen, J.T. Lin, D. Bhattacharya, Y.C. Hsu, H.C. Lin, K.C. Ho, K.L. Lu, Journal of Materials Chemistry 22 (2012) 130. https://doi.org/10.1039/c1jm13178h
  39. G. Cauquis, A. Deronzier, D. Serve, Bulletin Society of Chemistry - France (1976) 295.
  40. S.P. . Massie, Department of Chemistry, Fisk University, Nashville, Tennessee, 1954
  41. M. Helgesen, S.A. Gevorgyan, F.C. Krebs, R.A.J. Janssen, Chemistry of Materials 21 (2009) 4669-4675. https://doi.org/10.1021/cm901937d
  42. J.H. Hung, K.C. Li, H.Y. Wei, P.Y. Chen, L.Y. Lin, D. Kekuda, H.C. Lin, K.C. Ho, C.W. Chu, Organic Electronics 10 (2009) 1109-1115. https://doi.org/10.1016/j.orgel.2009.05.025
  43. J.H. Lee, J.I. Lee, M.J. Park, Y.K. Jung, N.S. Cho, H.J. Che, D.H. Hwang, S.K. Lee, J.H. Park, J.W. Hong, H.Y. Chu, H.K. Shim, Journal of Polymer Science Part A: Polymer Chemistry 45 (2007) 1236. https://doi.org/10.1002/pola.21890
  44. S.K. Kim, J.H. Lee, D.H. Hwang, Synthetic Metals 152 (2005) 201. https://doi.org/10.1016/j.synthmet.2005.07.212
  45. X. Tu, X. Fu, Q. Jiang, Displays (2010).
  46. H. Padhy, J.H. Huang, D. Sahu, D. Patra, D. Kekuda, C.W. Chu, H.C. Lin, Journal of Polymer Science Part A: Polymer Chemistry 48 (2010) 4823. https://doi.org/10.1002/pola.24273
  47. A. Misra, P. Kumar, R. Srivastava, S.K. Dhawan, M.N. Kamalasanan, S. Chandra, Indian Journal of Pure and Applied Physics 43 (2005) 921-925.
  48. J.Y. Lee, M.H. Choi, H.J. Song, D.K. Moon, Journal of Polymer Science Part A: Polymer Chemistry 48 (2010) 4875-4883. https://doi.org/10.1002/pola.24280
  49. J. Doskocz, J. Soloducho, J. Cabaj, M. Lapkowski, S. Golba, K. Palewska, Electroanalysis 19 (2007) 1394-1401. https://doi.org/10.1002/elan.200703866

Cited by

  1. An effect on the side chain position of D–π–A-type conjugated polymers with sp2-hybridized orbitals for organic photovoltaics vol.4, pp.11, 2013, https://doi.org/10.1039/c3py00195d
  2. Enhanced stability in polymer solar cells by controlling the electrode work function via modification of indium tin oxide vol.115, pp.None, 2013, https://doi.org/10.1016/j.solmat.2013.03.034
  3. Polymer solar cells based on quinoxaline and dialkylthienyl substituted benzodithiophene with enhanced open circuit voltage vol.52, pp.7, 2013, https://doi.org/10.1002/pola.27085
  4. Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole vol.25, pp.5, 2013, https://doi.org/10.14478/ace.2014.1068
  5. Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구 vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1111
  6. Rigid한 Phenothiazine-Quinoxaline D/A 공액 고분자 구조의 용해성 향상 연구 및 유기박막태양전지로의 특성 분석 vol.20, pp.4, 2013, https://doi.org/10.7464/ksct.2014.20.4.415
  7. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes vol.17, pp.38, 2013, https://doi.org/10.1039/c5cp01495f
  8. Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives vol.7, pp.32, 2013, https://doi.org/10.1039/c9tc03148k
  9. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage vol.180, pp.None, 2013, https://doi.org/10.1016/j.dyepig.2020.108519
  10. Multiple Intramolecular Charge Transfers in Multimodular Donor-Acceptor Chromophores with Large Two-Photon Absorption vol.124, pp.45, 2013, https://doi.org/10.1021/acs.jpcc.0c07616
  11. Solvent-Dependent Molecular Isomerization and 2D Self-Assembled Phase Transitions of Benzothiadiazole-Based π-Conjugated Fluorophore vol.125, pp.35, 2013, https://doi.org/10.1021/acs.jpcc.1c06012
  12. New Unsymmetrically Substituted Benzothiadiazole-Based Luminophores: Synthesis, Optical, Electrochemical Studies, Charge Transport, and Electroluminescent Characteristics vol.26, pp.24, 2013, https://doi.org/10.3390/molecules26247596