DOI QR코드

DOI QR Code

A kinetic study on hydrochloric acid leaching of nickel from Ni-$Al_2O_3$ spent catalyst

  • Parhi, P.K. (Mineral Resources Research Division, Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Park, K.H. (Mineral Resources Research Division, Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Senanayake, G. (Parker Centre, School of Engineering and Information Technology, Murdoch University)
  • Published : 2013.03.25

Abstract

Hydrochloric acid leaching of nickel from spent Ni-$Al_2O_3$ catalyst (12.7% Ni, 39.2% Al and 0.68% Fe) has been investigated at a range of conditions by varying particle size (50-180 ${\mu}m$), acid concentration (0.025-2 M), pulp density (0.2-0.4%, w/v) and temperature (293-353 K). Nickel was selectively leached from the catalyst, irrespective of the different conditions. Under the most suitable conditions (1 M HCl, 323 K, stirring at 500 rpm, 50-71 ${\mu}m$ particle size), the extent of leaching of Ni and Al after 2 h was 99.9% and 1%, respectively. The XRD pattern of the spent catalyst corresponded to crystalline ${\alpha}-Al_2O_3$ along with elemental Ni. The peak due to elemental Ni was absent in the residue sample produced at the optimum leaching conditions, confirming the complete dissolution of Ni from the spent catalyst. The leaching results were well fitted with the shrinking core model with apparent activation energy of 17 kJ/ mol in the temperature range of 293-353 K indicating a diffusion controlled reaction.

Keywords

References

  1. C.L. Thomas, Catalytic Process and Proven Catalysts, Academic Press, New York/ London, 1970.
  2. G.W. Bridger, G.C. Chinchen, Catalyst Handbook, Wolfe Scientific Books, London, 1970, pp. 64-96.
  3. S. Goel, K.K. Pant, K.D.P. Nigam, Journal of Hazardous Materials 171 (2009) 253. https://doi.org/10.1016/j.jhazmat.2009.05.131
  4. H.I. Kim, K.-H. Park, D. Mishra, Hydrometallurgy 98 (2009) 192. https://doi.org/10.1016/j.hydromet.2009.04.002
  5. M. Marafi, A. Stanislaus, Resource Conservation and Recycling 52 (2008) 859. https://doi.org/10.1016/j.resconrec.2008.02.004
  6. J.Y. Lee, S.V. Rao, B.N. Kumar, D.J. Kang, B.R. Reddy, Journal of Hazardous Materials 176 (2010) 1122. https://doi.org/10.1016/j.jhazmat.2009.11.137
  7. D. Rapaport, Hydrocarbon Processing 79 (2000) 49.
  8. A. Szymczycha-Madeja, Journal of Hazardous Materials 186 (2011) 2157. https://doi.org/10.1016/j.jhazmat.2010.11.120
  9. V. Bosio, M. Viera, E. Donati, Journal of Hazardous Materials 154 (2008) 804. https://doi.org/10.1016/j.jhazmat.2007.10.095
  10. R.G. Busnardo, N.G. Busnardo, G.N. Salvato, J.C. Afonso, Journal of Hazardous Materials B139 (2007) 391. https://doi.org/10.1016/j.jhazmat.2006.06.015
  11. J. Idris, M. Musa, C.Y. Yin, K.H.K. Hamid, Journal of Industrial and Engineering Chemistry 16 (2010) 251. https://doi.org/10.1016/j.jiec.2010.01.044
  12. A.J. Chaudhary, J.D. Donaldson, S.C. Boddington, S.M. Grimes, Hydrometallurgy 34 (1993) 137. https://doi.org/10.1016/0304-386X(93)90031-8
  13. A. Ognyanova, T. Ozturk, I.D. Michelis, F. Ferella, G. Taglieri, A. Akcil, F. Veglio, Hydrometallurgy 100 (2009) 20. https://doi.org/10.1016/j.hydromet.2009.09.009
  14. W. Mulak, B. Miazga, A. Szymczycha, International Journal of Mineral Processing 77 (2005) 231. https://doi.org/10.1016/j.minpro.2005.06.005
  15. N.M. Al-Mansi, N.M. Abdel Monem, Waste Management 22 (2002) 85. https://doi.org/10.1016/S0956-053X(01)00024-1
  16. P. Alex, T.K. Mukherjee, M. Sundaresan, Hydrometallurgy 34 (1993) 239. https://doi.org/10.1016/0304-386X(93)90038-F
  17. E. Furimsky, Catalysis Today 30 (1996) 223. https://doi.org/10.1016/0920-5861(96)00094-6
  18. A. Roine, Outokumpu HSC Chemistry Thermochemical Database, Ver. 6.1, Outokumpu Research Oy, Finland, 2002.
  19. E.A. Abdel-Aal, M.M. Rashad, Hydrometallurgy 74 (2004) 189. https://doi.org/10.1016/j.hydromet.2004.03.005
  20. D. Georgiou, V.G. Papangelakis, Hydrometallurgy 49 (1998) 23. https://doi.org/10.1016/S0304-386X(98)00023-1
  21. X. Hou, L. Xiao, C. Gao, Q. Zhang, L. Zeng, Hydrometallurgy 104 (2010) 76. https://doi.org/10.1016/j.hydromet.2010.04.012
  22. F. Habashi, Gordon and Breach, New York 1 (1969) 153-163.
  23. S. Anand, R.P. Das, Transactions of the Indian Institute of Metals 41 (1988) 335.
  24. L.T. Romankiw, D. Bruyn, Unit Process in Hydrometallurgy, Dallas, TX, 1963, p. 62.
  25. P.R. Raisoni, S.G. Dixit, Minerals Engineering 1 (1988) 225. https://doi.org/10.1016/0892-6875(88)90044-1
  26. G. Senanayake, A. Senaputra, M.J. Nicol, Hydrometallurgy 105 (2010) 60. https://doi.org/10.1016/j.hydromet.2010.07.011
  27. G. Senanayake, G.K. Das, Hydrometallurgy 72 (2004) 59. https://doi.org/10.1016/S0304-386X(03)00132-4
  28. G. Senanayake, J. Childs, B.D. Akerstrom, D. Pugaev, Hydrometallurgy 110 (2011) 13. https://doi.org/10.1016/j.hydromet.2011.07.011

Cited by

  1. Fractionation Behavior of Metals (Al, Ni, V, and Mo) During Bioleaching and Chemical Leaching of Spent Petroleum Refinery Catalyst vol.225, pp.3, 2014, https://doi.org/10.1007/s11270-014-1893-1
  2. Chelation technology: a promising green approach for resource management and waste minimization vol.17, pp.1, 2015, https://doi.org/10.1039/c4em00559g
  3. An environmental procedure to extract titanium components and metallic iron from Ti-bearing blast furnace slag vol.4, pp.4, 2013, https://doi.org/10.1515/gps-2015-0031
  4. An environmental procedure to extract titanium components and metallic iron from Ti-bearing blast furnace slag vol.4, pp.4, 2013, https://doi.org/10.1515/gps-2015-0031
  5. Response surface methodology approach to leaching of nickel laterite and evaluation of different analytical techniques used for the analysis of leached solutions vol.8, pp.15, 2013, https://doi.org/10.1039/c6ay00457a
  6. Separation and recovery of neodymium and praseodymium from permanent magnet scrap through the hydrometallurgical route vol.51, pp.13, 2013, https://doi.org/10.1080/01496395.2016.1200087
  7. Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans vol.53, pp.11, 2013, https://doi.org/10.1080/10934529.2018.1471033
  8. An Economical Approach for the Recycling of High-Purity Silicon from Diamond-Wire Saw Kerf Slurry Waste vol.11, pp.1, 2013, https://doi.org/10.1007/s12633-018-9889-x
  9. The kinetic study of limonitic low grade nickel ore leaching using hydrochloric acid vol.478, pp.None, 2019, https://doi.org/10.1088/1757-899x/478/1/012009
  10. Advanced Review on Extraction of Nickel from Primary and Secondary Sources vol.40, pp.3, 2013, https://doi.org/10.1080/08827508.2018.1514300
  11. Leaching of metals from end-of-life solar cells vol.26, pp.29, 2019, https://doi.org/10.1007/s11356-018-1918-1
  12. Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution vol.28, pp.6, 2013, https://doi.org/10.7844/kirr.2019.28.6.36
  13. Ammonia leaching of slag from direct-to-blister copper smelting technology vol.7, pp.5, 2020, https://doi.org/10.3934/matersci.2020.5.565
  14. Preliminary Investigation of NiO Anode for NCA/NiO Battery from Spent Catalyst Recovery vol.1096, pp.1, 2013, https://doi.org/10.1088/1757-899x/1096/1/012140
  15. Leaching Kinetics of Mo, Ni, and Al Oxides from Spent Nickel-Molybdenum Hydrodesulfurization Catalyst in H2SO4 Solution vol.7, pp.2, 2013, https://doi.org/10.1007/s40831-021-00351-5
  16. A Review on Hydrometallurgical Processes for the Recovery of Valuable Metals from Spent Catalysts and Life Cycle Analysis Perspective vol.42, pp.5, 2013, https://doi.org/10.1080/08827508.2020.1726914