DOI QR코드

DOI QR Code

Effect of carbon nanotubes with different lengths on mechanical and electrical properties of silica-filled styrene butadiene rubber compounds

  • Park, Suk Moon (School of Applied Chemical Engineering, Chonnam National University) ;
  • Lim, Young Woo (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Chang Hwan (NEXEN Tire Corporation R&D Center) ;
  • Kim, Dong Jin (NEXEN Tire Corporation R&D Center) ;
  • Moon, Won-Jin (Korea Basic Science Institute Gwangju Center) ;
  • Kim, Jee-Hoon (School of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University) ;
  • Hong, Chang Kook (School of Applied Chemical Engineering, Chonnam National University) ;
  • Seo, Gon (School of Applied Chemical Engineering, Chonnam National University)
  • Published : 2013.03.25

Abstract

Carbon nanotubes (CNTs) having three different lengths of 5, 30, and 100 ${\mu}m$ were added to silica-filled styrene butadiene rubber (SBR) compounds in order to investigate the effect of the CNT addition on the dynamic and electrical properties. The amounts of CNTs were 1, 2, 4, and 7 phr, while the amount of silica was set high at 80 phr to clearly demonstrate the performance of the CNTs as fillers. The effect of CNTs on the silica-filled SBR compounds on the tensile properties is not significant, but the addition of longer CNTs with high loading severely deteriorated the dynamic properties, but considerably enhanced electrical conductivity. The medium loading of CNTs in silica-filled SBR compounds is suitable for the improvement of the electrical conductivity without severely sacrificing the dynamic properties.

Keywords

References

  1. S. Uhrlandt, A. Blume, Kautschuk Gummi Kunststoffe 54 (2001) 520.
  2. W. Hopkins, W. Hellens, A. Koski, J. Rausa, Rubber World 226 (2002) 37.
  3. G. Heinrich, T.A. Vilgis, Kautschuk Gummi Kunststoffe 61 (2008) 368.
  4. B.T. Poh, C.C. Ng, European Polymer Journal 34 (1998) 975. https://doi.org/10.1016/S0014-3057(97)00211-5
  5. J.W. Ten Brinke, S.C. Debnath, L. Reuvekamp, J.W.M. Noordermeer, Composites Science and Technology 63 (2003) 1165. https://doi.org/10.1016/S0266-3538(03)00077-0
  6. A.S. Hashim, B. Axahari, Y. Ikeda, S. Kohjiya, Rubber Chemistry and Technology 71 (1997) 289.
  7. I. Cho, KR Patent 10-0689975 (2006).
  8. H. Cheong, Y. Ahn, KR Patent 10-05322625 (2005).
  9. R. Andrews, M.C. Weisenberger, Current Opinion in Solid State & Materials Science 8 (2004) 31. https://doi.org/10.1016/j.cossms.2003.10.006
  10. M. Yang, V. Koutsos, M. Zaiser, Journal of Physical Chemistry B 109 (2005) 10009. https://doi.org/10.1021/jp0442403
  11. A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Composites Science and Technology 67 (2007) 1813. https://doi.org/10.1016/j.compscitech.2006.10.021
  12. Z.M. Mahdieh, V. Mottaghitalab, N. Piri N., A.K. Haghi, Korean Journal of Chemical Engineering 29 (2012) 111. https://doi.org/10.1007/s11814-011-0129-y
  13. C. Nah, J.Y. Lim, B.H. Cho, C.K. Hong, A.N. Gent, Journal of Applied Polymer Science 118 (2010) 1574.
  14. J. Choi, A.I. Isayev, Rubber Chemistry and Technology 85 (2012) 14. https://doi.org/10.5254/1.3672119
  15. J. Fritzsche, H. Lorenz, M. Kluppel, Macromolecular Materials and Engineering 294 (2009) 551. https://doi.org/10.1002/mame.200900131
  16. H. Lorenz, J. Fritzsche, A. Das, K.W. Stockelhuber, R. Jurk, G. Heinrich, M. Kluppel, Composites Science and Technology 69 (2009) 2135. https://doi.org/10.1016/j.compscitech.2009.05.014
  17. X. Zhou, Y. Zhu, Q. Gong, J. Liang, Materials Letters 60 (2006) 3769. https://doi.org/10.1016/j.matlet.2006.03.147
  18. K.A. Grosch, Rubber Chemistry and Technology 69 (1996) 495. https://doi.org/10.5254/1.3538383
  19. F. Cataldo, Angewandte Makromolekulare Chemie 270 (1999) 81. https://doi.org/10.1002/(SICI)1522-9505(19990901)270:1<81::AID-APMC81>3.0.CO;2-N
  20. V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer, Journal of Applied Polymer Science 102 (2006) 4194. https://doi.org/10.1002/app.24563
  21. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 409 (2005) 47. https://doi.org/10.1016/j.physrep.2004.10.006
  22. G. Seo, S.M. Park, K. Ha, K.T. Choi, C.K. Hong, S. Kaang, Journal of Materials Science 45 (2010) 1897. https://doi.org/10.1007/s10853-009-4175-3
  23. A.N. Gent, J.A. Hartwell, Rubber Chemistry and Technology 76 (2003) 517. https://doi.org/10.5254/1.3547758
  24. P.J. Flory, J. Rehner, Journal of Chemical Physics 11 (1943) 512. https://doi.org/10.1063/1.1723791
  25. M. Moniruzzaman, K.I. Winey, Macromolecules 39 (2006) 5194. https://doi.org/10.1021/ma060733p
  26. L. Bokobza, M. Kolodziej, Polymer International 55 (2006) 1090. https://doi.org/10.1002/pi.2064
  27. L. Bokobza, C. Belin, Journal of Applied Polymer Science 105 (2007) 2054. https://doi.org/10.1002/app.26153
  28. J. Diani, B. Fayolle, P. Gilormini, European Polymer Journal 45 (2009) 601. https://doi.org/10.1016/j.eurpolymj.2008.11.017

Cited by

  1. Preparation of Hydroxylated Carbon Nanotubes/Magnetic Iron Oxide Compound Particles vol.791, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.791-793.423
  2. Effect of Non‐Rubber Components of NR on the Carbon Nanotube (CNT) Localization in SBR/NR Blends vol.299, pp.5, 2013, https://doi.org/10.1002/mame.201300254
  3. Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes vol.3, pp.21, 2013, https://doi.org/10.1039/c5tc00729a
  4. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior vol.6, pp.2, 2013, https://doi.org/10.1016/j.jare.2013.12.002
  5. Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites vol.132, pp.25, 2013, https://doi.org/10.1002/app.42075
  6. Thermal Properties of epoxy composites with silicon carbide and/or graphite vol.68, pp.4, 2013, https://doi.org/10.3938/jkps.68.551
  7. 탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향 vol.27, pp.2, 2013, https://doi.org/10.14478/ace.2016.1008
  8. Review Highlighting Physical Prospects of Styrenic Polymer and Styrenic Block Copolymer Reinforced with Carbon Nanotube vol.56, pp.6, 2013, https://doi.org/10.1080/03602559.2016.1233276
  9. Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber vol.14, pp.45, 2018, https://doi.org/10.1039/c8sm01953c
  10. Hybrid factors influencing wet grip and rolling resistance properties of solution styrene‐butadiene rubber composites vol.67, pp.3, 2018, https://doi.org/10.1002/pi.5515
  11. Effects of liquid polyisoprene and magnesium oxide on the mechanical properties of styrene‐butadiene rubber/carbon nanotubes composite vol.39, pp.suppl2, 2013, https://doi.org/10.1002/pc.24164
  12. Mechanical, dielectric, and thermal properties of fluorosilicone rubber composites filled with silica/multiwall carbon nanotube hybrid fillers vol.137, pp.48, 2013, https://doi.org/10.1002/app.49574
  13. Vulcanization kinetics of styrene butadiene rubber reinforced by graphenic particles vol.2, pp.2, 2013, https://doi.org/10.1002/pls2.10039
  14. The effect of nanoparticle additive on surface milling in glass fiber reinforced composite structures vol.29, pp.9, 2013, https://doi.org/10.1177/09673911211014172