DOI QR코드

DOI QR Code

High photonic effect of organic dye degradation by CdSe-graphene-$TiO_2$ particles

  • Ghosh, Trisha (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Cho, Kwang-Youn (Korea Institute of Ceramic Engineering and Technology) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Nikam, Vikram (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Published : 2013.05.25

Abstract

Photocatalytic activity of CdSe (cadmium selenide) decorated graphene composites coupled with $TiO_2$ (titanium oxide) was investigated with organic dye solutions. The characterizations of composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The degradation of methyl orange (MO) and rhodamine B (RhB) was observed by measuring the decrease in the concentration by UV spectrophotometer. The synergistic effect of graphene on CdSe and $TiO_2$ was demonstrated by comparative study. The composites were tested for recyclability, investigating the stability of CdSe-graphene/$TiO_2$ composites.

Keywords

References

  1. S.C. Lo, C.F. Lin, C.H. Wu, P.H. Hsieh, Journal of Hazardous Materials B 114 (2004) 183-190. https://doi.org/10.1016/j.jhazmat.2004.08.007
  2. J. Wang, Y.F. Jiang, Z.H. Zhang, G. Zhang, T. Ma, W. Sun, Desalination 216 (1-3) (2007) 196-208. https://doi.org/10.1016/j.desal.2006.11.024
  3. R.M. Alberici, W.F. Jardim, Water Research 28 (8) (1994) 1845-1849. https://doi.org/10.1016/0043-1354(94)90258-5
  4. L.B. Reutergardh, M. Iangphasuk, Chemosphere 35 (3) (1997) 585-596. https://doi.org/10.1016/S0045-6535(97)00122-7
  5. N. Serpone, E. Pelizzetti (Eds.), Photocatalysis: Fundamentals and Applications, John Wiley & Sons, New York, 1989.
  6. P.V. Kamat, Chemical Reviews 93 (1993) 267. https://doi.org/10.1021/cr00017a013
  7. B. Su, K.L. Choy, Thin Solid Films 361-362 (2000) 102. https://doi.org/10.1016/S0040-6090(99)00857-3
  8. K.R. Murali, V. Swaminathan, D.C. Trivedi, Solar Energy Materials and Solar Cells 81 (2004) 113. https://doi.org/10.1016/j.solmat.2003.08.019
  9. K.R. Patil, D.V. Paranjape, S.D. Sathaye, A. Mitra, S.R. Padalkar, A.B. Mandale, Materials Letters 46 (2000) 81. https://doi.org/10.1016/S0167-577X(00)00146-4
  10. H. Fuji, M. Ohtaki, K. Eguchi, H. Arai, Journal of Molecular Catalysis A: Chemical 129 (1998) 61-68. https://doi.org/10.1016/S1381-1169(97)00132-5
  11. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, Solar Energy 77 (2004) 831-838. https://doi.org/10.1016/j.solener.2004.06.020
  12. K.K. Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu, Thin Solid Films 322 (1998) 21-27. https://doi.org/10.1016/S0040-6090(97)01015-8
  13. X.Q. Li, Y. Cheng, L.F. Liu, J. Mu, Colloids and Surface A: Physiochemical and Engineering Aspects 353 (2001) 226-231.
  14. M. Melle-Franco, M. Marcaccio, D. Paolucci, F. Paolucci, V. Georgakilas, D. Guldi, Journal of the American Chemical Society 126 (2004) 1646-1647. https://doi.org/10.1021/ja039918r
  15. W.C. Oh, M.L. Chen, K. Cho, C. Kim, Z. Meng, L. Zhu, Chinese Journal of Catalysis (2011) 32.
  16. F.J. Zhang, W.C. Oh, J.G. Choi, K. Zhang, Z.D. Meng, M.L. Chen, Nanotubes and Carbon Nanostructures 19 (2011) 564-574. https://doi.org/10.1080/1536383X.2010.496058
  17. W.C. Oh, M.L. Chen, K. Zhang, F.J. Zhang, W.K. Jang, Journal of the Korean Physical Society 56 (2010) 1097. https://doi.org/10.3938/jkps.56.1097
  18. W.C. Oh, F.J. Zhang, Asian Journal of Chemistry 23 (2011) 875.
  19. G.L. Luque, M.I. Rojas, G.A. Rivas, E.P.M. Leiva, Electrochimica Acta (2010) 523-530.
  20. H.H. Huang, Photocatalytic degradation of monochlorobenzene in water by UV/ TiO2 process, Ph.D. Dissertation, Graduate Institute of Environmental Engineering, National Central University, 2006.
  21. M. Inagaki, Y. Hirose, T. Matsunage, T. Tsumura, M. Toyoda, Carbon 41 (2003) 2619-2624. https://doi.org/10.1016/S0008-6223(03)00340-3
  22. Z.D. Meng, L. Zhu, W.C. Oh, Journal of Industrial and Engineering Chemistry (2012), doi:10.1016/j.jiec.2012.05.019.
  23. Z. Lei, Z.D. Meng, L.C. Ming, F.J. Zhang, J.G. Choi, J.Y. Park, W.C. Oh, Journal of Photocatalysis Science 1 (2) (2010) 69-76.
  24. Himani Sharma, Shailesh N. Sharma, Gurmeet Singh, S.M. Shivaprasad, Physica E: Low-dimensional Systems and Nanostructures 31 (2) (2006) 180-186. https://doi.org/10.1016/j.physe.2005.12.154
  25. Shailesh N. Sharma, Tanvi Vats, Mahesh Kumar, Kiran Jain, A.K. Narula, Materials Science and Engineering: B 176 (17) (2011) 1342-1348. https://doi.org/10.1016/j.mseb.2011.05.047
  26. Zhao Wei, Feng Lili, Yang Rong, Zheng Jie, Li Xingguo, Applied Catalysis B: Environmental 103 (March (1-2)) (2011) 181-189. https://doi.org/10.1016/j.apcatb.2011.01.025
  27. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487. https://doi.org/10.1021/nn800251f
  28. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197. https://doi.org/10.1038/nature04233
  29. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhass, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282. https://doi.org/10.1038/nature04969
  30. W.C. Oh, M.L. Chen, K. Cho, C. Kim, Z. Meng, L. Zhu, Chinese Journal of Catalysis V32 (10) (2011) 1577-1583. https://doi.org/10.1016/S1872-2067(10)60264-1
  31. V. Augugliaro, M. Litter, L. Palmisano, J. Soria, Journal of Photochemistry and Photobiology C 7 (127-44) (2006). https://doi.org/10.1016/j.jphotochemrev.2006.12.001
  32. D.H. Kim, D. Choi, S. Kim, K.S. Lee, Catalysis Communications 9 (654-657) (2008). https://doi.org/10.1016/j.catcom.2007.07.017
  33. J. Yang, H. Bai, Q. Jiang, J. Lian, Thin Solid Films 516 (2008) 1736-1742. https://doi.org/10.1016/j.tsf.2007.05.034
  34. D. Jiang, Y. Xu, B. Hou, D. Wu, Y. Sun, Journal of Solid State Chemistry 180 (2007) 1787-1791. https://doi.org/10.1016/j.jssc.2007.03.010
  35. R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, Journal of Photochemistry and Photobiology A 194 (2008) 173-180.
  36. C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Dyes and Pigments 49 (2) (2001) 117-125. https://doi.org/10.1016/S0143-7208(01)00014-6
  37. Z. Zainal, C.Y. Lee, M.Z. Hussein, A. Kassim, N.A. Yusof, Journal of Hazardous Materials 146 (2007) 73-80. https://doi.org/10.1016/j.jhazmat.2006.11.055

Cited by

  1. Photoelectrochemical Properties of Graphene and Its Derivatives vol.3, pp.3, 2013, https://doi.org/10.3390/nano3030325
  2. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review vol.4, pp.8, 2014, https://doi.org/10.1039/c3ra45013a
  3. A Facile Route towards the Synthesis of Fe3O4/Graphene Oxide Nanocomposites for Environmental Applications vol.599, pp.1, 2014, https://doi.org/10.1080/15421406.2014.935919
  4. Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method vol.51, pp.3, 2013, https://doi.org/10.4191/kcers.2014.51.3.162
  5. Graphene oxide based smart fluids vol.10, pp.35, 2014, https://doi.org/10.1039/c4sm01151a
  6. Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques vol.21, pp.5, 2013, https://doi.org/10.1016/j.ultsonch.2014.04.016
  7. Synthesis and photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposites for dye removal vol.131, pp.17, 2013, https://doi.org/10.1002/app.40715
  8. Degradation of Organic Dyes by CdSe Decorated Graphene Nanocomposite in Dark Ambiance vol.23, pp.5, 2013, https://doi.org/10.1080/1536383x.2014.885954
  9. Ultrasonic-Assisted Synthesis of Pd-MWCNT/TiO2 Catalysts and Its Application in the Photodegradation of Reactive Black B vol.23, pp.7, 2013, https://doi.org/10.1080/1536383x.2014.915809
  10. Novel PbSe/Graphene Nanocomposites Synthesized With Ultrasonic Assisted Method and their Enhanced Photocatalytic Activity vol.45, pp.4, 2013, https://doi.org/10.1080/15533174.2013.841221
  11. Differently Shaped Au Nanoparticles: A Case Study on the Enhancement of the Photocatalytic Activity of Commercial TiO 2 vol.8, pp.1, 2013, https://doi.org/10.3390/ma8010162
  12. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts vol.115, pp.18, 2013, https://doi.org/10.1021/acs.chemrev.5b00267
  13. Removal of Dyes Using Graphene-Based Composites: a Review vol.228, pp.5, 2013, https://doi.org/10.1007/s11270-017-3361-1
  14. Preparation of Graphene-BiOCl/Fe3O4 Nanocomposites and Their Use as Photocatalysts for Organic Dyes Degradation vol.52, pp.1, 2013, https://doi.org/10.7473/ec.2017.52.1.9
  15. Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/CdS as Nanohybrid Materials vol.29, pp.2, 2013, https://doi.org/10.1007/s10876-017-1326-6
  16. Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2 vol.55, pp.4, 2013, https://doi.org/10.4191/kcers.2018.55.4.03
  17. Preparation and Characterization of Magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 Nanoparticles and Investigation of Their Photocatalytic and Anticancer Properties on PANC1 Cells vol.12, pp.19, 2013, https://doi.org/10.3390/ma12193274
  18. TiO2/graphene oxide nanocomposite with enhanced photocatalytic capacity for degradation of 2,4-dichlorophenoxyacetic acid herbicide vol.4, pp.None, 2021, https://doi.org/10.1016/j.wen.2021.07.001