DOI QR코드

DOI QR Code

Nano-sized $LiNi_{0.5}Mn_{1.5}O_4$ cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis

  • Published : 2013.07.25

Abstract

$LiNi_{0.5}Mn_{1.5}O_4$ cathode powders with a mean particle size of 140 nm are prepared by high-temperature flame spray pyrolysis. $Li/LiNi_{0.5}Mn_{1.5}O_4$ cells show two plateaus at approximately 4.1 and 4.7 V during discharge, irrespective of any excess of the lithium component in the spray solution, although the 4.1 V plateau decreases when the spray solution contained 20% excess lithium. The discharge capacity of the powder prepared from a spray solution with 20% excess lithium decreases from 133 to $126mAhg^{-1}$ by the 50th cycle at a current density of 0.1 C, which is a capacity retention of 95%.

Keywords

References

  1. T. Ogihara, H. Aikiyo, N. Ogata, K. Katayama, Y. Azuma, H. Okabe, T. Okawa, Advanced Powder Technology 13 (2002) 437. https://doi.org/10.1163/156855202320536061
  2. D. Liu, J. Han, J.B. Goodenough, Journal of Power Sources 195 (2010) 2918. https://doi.org/10.1016/j.jpowsour.2009.11.024
  3. B. Lin, Z. Wen, Z. Gu, S. Huang, Journal of Power Sources 175 (2008) 564. https://doi.org/10.1016/j.jpowsour.2007.09.055
  4. Y. Idemoto, Y. Takanashi, N. Kitamura, Journal of Power Sources 189 (2009) 269. https://doi.org/10.1016/j.jpowsour.2008.09.048
  5. K.M. Begam, S.R.S. Prabaharan, Journal of Power Sources 159 (2006) 319. https://doi.org/10.1016/j.jpowsour.2006.04.133
  6. Y.J. Wei, K. Nikolowski, S.Y. Zhan, H. Ehrenberg, S. Oswald, G. Chen, C.Z. Wang, H. Chen, Electrochemistry Communications 11 (2009) 2008. https://doi.org/10.1016/j.elecom.2009.08.040
  7. X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Electrochimica Acta 54 (2009) 7471. https://doi.org/10.1016/j.electacta.2009.07.084
  8. D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.J. Kim, S.D. Choi, Journal of Power Sources 162 (2006) 780. https://doi.org/10.1016/j.jpowsour.2005.07.009
  9. X. Zhang, H. Zheng, V. Battaglia, R.L. Axelbaum, Proceedings of the Combustion Institute 33 (2011) 1867. https://doi.org/10.1016/j.proci.2010.06.084
  10. S.H. Oh, S.H. Jeon, W.I. Cho, C.S. Kim, B.W. Cho, Journal of Alloys and Compounds 452 (2008) 389. https://doi.org/10.1016/j.jallcom.2006.10.153
  11. H.S. Fang, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Materials Letters 60 (2006) 1273. https://doi.org/10.1016/j.matlet.2005.11.013
  12. X. Fang, Y. Lu, N. Ding, X.Y. Feng, C. Liu, C.H. Chen, Electrochimica Acta 55 (2010) 832. https://doi.org/10.1016/j.electacta.2009.09.046
  13. Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Electrochemistry Communications 4 (2002) 989. https://doi.org/10.1016/S1388-2481(02)00491-5
  14. S.T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho, Electrochimica Acta 47 (2002) 2543. https://doi.org/10.1016/S0013-4686(02)00131-7
  15. T.J. Patey, R. Buchel, M. Nakayama, P. Novak, Physical Chemistry Chemical Physics 11 (2009) 3756. https://doi.org/10.1039/b821572n
  16. T.J. Patey, R. Buchel, S.H. Ng, F. Krumeich, S.E. Pratsinis, P. Novak, Journal of Power Sources 189 (2009) 149. https://doi.org/10.1016/j.jpowsour.2008.10.002
  17. T. Lee, K. Cho, J. Oh, D. Shin, Journal of Power Sources 174 (2007) 394. https://doi.org/10.1016/j.jpowsour.2007.06.136
  18. H.D. Jang, C.M. Seong, Y.J. Suh, H.C. Kim, C.K. Lee, Aerosol Science and Technology 38 (2004) 1027. https://doi.org/10.1080/027868290524016
  19. T.J. Patey, S.H. Ng, R. Buechel, N. Tran, F. Krumeich, J. Wang, H.K. Liu, P. Novak, Electrochemical and Solid-State Letters 11 (2008) A47.
  20. J.H. Yi, J.H. Kim, H.Y. Koo, Y.N. Ko, Y.C. Kang, J.H. Lee, Journal of Power Sources 196 (2011) 2858. https://doi.org/10.1016/j.jpowsour.2010.11.038
  21. S.E. Pratsinis, Progress in Energy and Combustion Science 24 (1998) 197. https://doi.org/10.1016/S0360-1285(97)00028-2
  22. Z. Bao, W. Zhi-xing, G. Hua-jun, Transactions of Nonferrous Metals Society of China 17 (2007) 287. https://doi.org/10.1016/S1003-6326(07)60086-7
  23. Y. Idemoto, H. Narai, N. Koura, Journal of Power Sources 119 (2003) 125.

Cited by

  1. Low-temperature Synthesis of Nanocrystalline LiNi0.5Mn1.5O4 and its Application as Cathode Material in High-power Li-ion Batteries vol.67, pp.2, 2014, https://doi.org/10.1071/ch13442
  2. Preparation and electrochemical property of Li4Mn5−xTixO12 cathode materials for lithium ion battery by spray pyrolysis vol.123, pp.1436, 2015, https://doi.org/10.2109/jcersj2.123.280
  3. Chemical modification in and on single phase [NiO] 0.5 [Al 2 O 3 ] 0.5 nanopowders produces “chocolate chip‐like” Ni x @[NiO] vol.102, pp.12, 2013, https://doi.org/10.1111/jace.16632