DOI QR코드

DOI QR Code

Versatile p(3-sulfopropyl methacrylate) hydrogel reactor for the preparation of Co, Ni nanoparticles and their use in hydrogen production

  • Turhan, Tugce (Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Nanoscience and Technology Research and Application Center (NANORAC), Ayazaga Campus) ;
  • Avcibasi, Yuksel Guvenilir (Istanbul Technical University, Chemical Engineering Department, Ayazaga Campus) ;
  • Sahiner, Nurettin (Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Nanoscience and Technology Research and Application Center (NANORAC), Ayazaga Campus)
  • Published : 2013.07.25

Abstract

In this study, polymeric hydrogels derived from 3-sulfopropyl methacrylate (SPM) were used in the preparation of composite-catalyst system in hydrogen generation from hydrolysis of $NaBH_4$. In order to generate pores and determine their effect on hydrogen production, silica based p(SPM) hydrogels were synthesized also prepared. Additionally, the effects of metal type, temperature, the amount of the catalyst, metal reloading, and reusability were investigated. The activation energy, activation enthalpy, and activation entropy for the hydroylsis reaction of $NaBH_4$ solution in the presence of p(SPM)-Co catalyst system were calculated as $41.67kJmol^{-1}$, $38.15kJmol^{-1}$, -173.139 J/mol K, respectively.

Keywords

References

  1. L. Schlapbach, A. Zuttel, Nature 414 (2001) 353-358.
  2. J.K. Lee, H.H. Ann, Y. Yi, K.W. Lee, S. Uhm, J. Lee, Catalysis Communications 16 (2011) 120-123. https://doi.org/10.1016/j.catcom.2011.09.015
  3. R. Retnamma, A.Q. Novais, C.M. Rangel, International Journal of Hydrogen Energy 36 (2011) 9772-9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  4. R. Strobel, J. Garche, P.T. Moseley, L. Jorissen, G. Wolf, Journal of Power Sources 159 (2006) 781-801. https://doi.org/10.1016/j.jpowsour.2006.03.047
  5. M.Q. Fan, F. Xu, L.X. Sun, International Journal of Hydrogen Energy 32 (2007) 2809. https://doi.org/10.1016/j.ijhydene.2006.12.020
  6. C.H. Liu, B.H. Chen, C.H. Hsuch, J.R. Ku, M.S. Jeng, F. Tsau, International Journal of Hydrogen Energy 34 (2009) 2153. https://doi.org/10.1016/j.ijhydene.2008.12.059
  7. R. Fernandes, N. Patel, A. Miotello, International Journal of Hydrogen Energy 34 (2009) 2893. https://doi.org/10.1016/j.ijhydene.2009.02.007
  8. N. Sahiner, A. Kaynak, S. Butun, Journal of Non-Crystalline Solids 358 (2012) 758-764. https://doi.org/10.1016/j.jnoncrysol.2011.12.022
  9. N. Sahiner, M. Singh, Polymer 48 (2007) 2827-2834. https://doi.org/10.1016/j.polymer.2007.01.005
  10. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, Applied Catalysis B 101 (2010) 137. https://doi.org/10.1016/j.apcatb.2010.09.022
  11. N. Sahiner, O. Ozay, E. Inger, N. Aktas, Journal of Power Sources 196 (2011) 10105-10111. https://doi.org/10.1016/j.jpowsour.2011.08.068
  12. N. Sahiner, S. Butun, O. Ozay, B. Dibek, Journal of Colloid and Interface Science 373 (2012) 122-128. https://doi.org/10.1016/j.jcis.2011.08.080
  13. O. Ozay, E. Inger, N. Aktas, N. Sahiner, International Journal of Hydrogen Energy 36 (2011) 8209-8216. https://doi.org/10.1016/j.ijhydene.2011.04.140
  14. N. Sahiner, O. Ozay, E. Inger, N. Aktas, Applied Catalysis B 102 (2011) 201-206. https://doi.org/10.1016/j.apcatb.2010.11.042
  15. O. Ozay, N. Aktas, E. Inger, N. Sahiner, International Journal of Hydrogen Energy 36 (2011) 1998-2006. https://doi.org/10.1016/j.ijhydene.2010.11.045
  16. N. Sahiner, O. Ozay, N. Aktas, E. Inger, J. He, International Journal of Hydrogen Energy 36 (2011) 15250-15258. https://doi.org/10.1016/j.ijhydene.2011.08.082
  17. E. Keceli, S. Ozkar, Journal of Molecular Catalysis A: Chemical 286 (2008) 87. https://doi.org/10.1016/j.molcata.2008.02.008
  18. Z. Liu, B. Guo, S.H. Chan, E.H. Tang, L. Hong, Journal of Power Sources 176 (2008) 306. https://doi.org/10.1016/j.jpowsour.2007.09.114
  19. R. Pena-Alonso, A. Sicurelli, E. Callone, G. Carturan, R. Raj, Journal of Power Sources 165 (2007) 315. https://doi.org/10.1016/j.jpowsour.2006.12.043
  20. N. Patel, R. Fernandes, G. Guella, A. Miotello, Applied Catalysis B 95 (2010) 137-143. https://doi.org/10.1016/j.apcatb.2009.12.020
  21. H.B. Dai, L.L. Gao, Y. Liang, X.D. Kang, P. Wang, Journal of Power Sources 195 (2010) 307-312. https://doi.org/10.1016/j.jpowsour.2009.06.094
  22. X. Yang, F. Cheng, J. Liang, Z. Tao, J. Chen, International Journal of Hydrogen Energy 34 (2009) 8785-8791. https://doi.org/10.1016/j.ijhydene.2009.08.075
  23. M. Rakap, S. Ozkar, International Journal of Hydrogen Energy 35 (2010) 3341-3346. https://doi.org/10.1016/j.ijhydene.2010.01.138
  24. M. Zahmakiran, F. Durap, S. Ozkar, International Journal of Hydrogen Energy 35 (2010) 187-197. https://doi.org/10.1016/j.ijhydene.2009.10.055
  25. S.B. Kalindi, M. Indirani, B.R. Jagirdar, Inorganic Chemistry 47 (2008) 7424-7429. https://doi.org/10.1021/ic800805r
  26. O. Metin, S. Ozkar, Energy and Fuels 23 (2009) 3517-3526. https://doi.org/10.1021/ef900171t

Cited by

  1. Energy and environmental usage of super porous poly(2-acrylamido-2-methyl-1-propan sulfonic acid) cryogel support vol.4, pp.45, 2013, https://doi.org/10.1039/c4ra01386g
  2. NaOH modified P(acrylamide) hydrogel matrices for in situ metal nanoparticles preparation and their use in H2 generation from hydrolysis of NaBH4 vol.131, pp.22, 2013, https://doi.org/10.1002/app.41106
  3. Preparation of hollow poly(vinylidene fluoride) capsules containing nickel catalyst for hydrogen storage and production vol.39, pp.5, 2013, https://doi.org/10.1002/er.3267
  4. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution vol.19, pp.6, 2017, https://doi.org/10.1007/s11051-017-3924-5
  5. Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4-nitrophenol vol.26, pp.1, 2013, https://doi.org/10.1007/s10934-018-0654-8
  6. Starch hydrogel-loaded cobalt nanoparticles for hydrogen production from hydrolysis of sodium borohydride vol.10, pp.2, 2013, https://doi.org/10.1088/2043-6254/ab23fb
  7. Transpicuous-Cum-Fouling Resistant Copolymers of 3-Sulfopropyl Methacrylate and Methyl Methacrylate for Optronics Applications in Aquatic Medium and Healthcare vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/5392074
  8. Towards optimizing cobalt based metal oxide nanocrystals for hydrogen generation via NaBH4 hydrolysis vol.589, pp.None, 2013, https://doi.org/10.1016/j.apcata.2019.117303
  9. Gum Acacia‐cl‐poly(acrylamide)@carbon nitride Nanocomposite Hydrogel for Adsorption of Ciprofloxacin and its Sustained Release in Artificial Ocular Solution vol.305, pp.9, 2020, https://doi.org/10.1002/mame.202000274