DOI QR코드

DOI QR Code

Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils

  • Garcia-Zapateiro, L.A. (Departamento de Operaciones Unitarias, Facultad de Ingenieria, Grupo de Investigacion Ingenieria de Fluidos Complejos y Reologia de Alimentos (IFCRA), Universidad de Cartagena Cartagena de Indias) ;
  • Franco, J.M. (Departamento de Ingenieria Quimica, Campus de "El Carmen", Universidad de Huelva, Campus de Excelencia Internacional Agroalimentario) ;
  • Valencia, C. (Departamento de Ingenieria Quimica, Campus de "El Carmen", Universidad de Huelva, Campus de Excelencia Internacional Agroalimentario) ;
  • Delgado, M.A. (Departamento de Ingenieria Quimica, Campus de "El Carmen", Universidad de Huelva, Campus de Excelencia Internacional Agroalimentario) ;
  • Gallegos, C. (Departamento de Ingenieria Quimica, Campus de "El Carmen", Universidad de Huelva, Campus de Excelencia Internacional Agroalimentario)
  • Published : 2013.07.25

Abstract

This work deals with the viscous, thermal and tribological characterization of a variety of estolides, obtained from both oleic and ricinoleic acids, using different acid-catalysed synthesis protocols, and their blends with vegetable (high-oleic sunflower, HOSO, and castor, CO) oils. Estolides with molecular weights between 4.4 and 6.9 times higher than the originating fatty acids were obtained. Polymerization degree was larger when using the sulphuric acid-catalysed synthesis protocol. Estolides obtained from oleic acid displayed higher freezing temperatures than the fatty acid, whereas the crystallization process was delayed in estolides obtained from ricinoleic acid, yielding improved low-temperature properties. Ricinoleic acid-derived estolides showed much higher viscosity values than those prepared from the oleic acid, with values of kinematic viscosity up to around $6700mm^2/s$. In general, viscosities were related to estolide molecular weight. Significant increments in HOSO and CO viscosities were found when they were blended with estolides, especially those prepared from the ricinoleic acid using the sulphuric and p-toluensulphonic acids-catalyzed methods. Relative increments in kinematic viscosities up to 1500% and 700% were obtained for HOSO and CO, respectively. HOSO's viscosity-temperature dependence was significantly improved when it was blended with different estolides, whereas CO/oleic acid-derived estolides blends showed a more moderate improvement of CO thermal dependence. The sulphuric acid-catalysed method influences friction and wear in the ball-on-plates contact lubricated with estolides. The addition of the different estolides to HOSO or CO does not modify their frictional behavior, resulting in just one single Stribeck curve for all samples, and significantly reduces wear.

Keywords

References

  1. T. Regueira, L. Lugo, O. Fandino, E.R. Lopez, J. Fernandez, Green Chemistry 13 (2011) 1293. https://doi.org/10.1039/c0gc00597e
  2. D.R. Kodali, Industrial Lubrication and Tribology 54 (2002) 165. https://doi.org/10.1108/00368790210431718
  3. T. Regueira, L. Lugo, O. Fandino, E.R. Lopez, J. Fernandez, Journal of Supercritical Fluids 68 (2012) 123. https://doi.org/10.1016/j.supflu.2012.04.012
  4. B.K. Sharma, A.J. Stipanovic, Termochimica Acta 402 (2003) 1. https://doi.org/10.1016/S0040-6031(02)00511-7
  5. S. Asadauskasa, S.Z. Erhan, Journal of the American Oil Chemists' Society 76 (1999) 313.
  6. M.A. Maleque, H.H. Masjuki, S.M. Sapuan, Industrial Lubrication of Tribology 55 (2003) 197.
  7. S.Z. Erhan, B.K. Sharma, J.M. Perez, Industrial Crops and Products 24 (2006) 292. https://doi.org/10.1016/j.indcrop.2006.06.008
  8. S. Duangkaewmanee, A. Petsom, Tribology International 44 (2011) 266. https://doi.org/10.1016/j.triboint.2010.10.028
  9. L.A. Quinchia, M.A. Delgado, C. Valencia, J.M. Franco, C. Gallegos, Environmental Science and Technology 43 (2009) 2060. https://doi.org/10.1021/es803047m
  10. L.A. Quinchia, M.A. Delgado, C. Valencia, J.M. Franco, C. Gallegos, Industrial Crops and Products 32 (2010) 607. https://doi.org/10.1016/j.indcrop.2010.07.011
  11. L.A. Quinchia, M.A. Delgado, C. Valencia, J.M. Franco, C. Gallegos, Journal of Agricultural and Food Chemistry 59 (2011) 12917. https://doi.org/10.1021/jf2035737
  12. L.A. Quinchia, M.A. Delgado, C. Valencia, J.M. Franco, C. Gallegos, Industrial Crops and Products 37 (2012) 383. https://doi.org/10.1016/j.indcrop.2011.12.021
  13. A. Adhvaryu, S.Z. Erhan, Industrial Crops and Products 15 (2002) 247. https://doi.org/10.1016/S0926-6690(01)00120-0
  14. B.K. Sharma, A. Adhvaryu, Z. Liu, S.Z. Erhan, Journal of the American Oil Chemists' Society 83 (2006) 129. https://doi.org/10.1007/s11746-006-1185-z
  15. A. Campanella, E. Rustoy, A. Baldessari, M.A. Baltanas, Bioresource Technology 101 (2010) 245. https://doi.org/10.1016/j.biortech.2009.08.035
  16. R. Awang, A.A. Nor, S. Ahmad, W.W. Zin, Journal of Oil Palm Research 19 (2007) 350.
  17. J.A. Zerkowski, Lipid Technology 20 (2008) 253. https://doi.org/10.1002/lite.200800066
  18. T.A. Isbell, R. Kleiman, Journal of the American Oil Chemists' Society 71 (1994) 379. https://doi.org/10.1007/BF02540517
  19. T.A. Isbell, H.B. Frykman, T.P. Abbott, J.E. Lohr, J.C. Drozd, Journal of the American Oil Chemists' Society 74 (1997) 473. https://doi.org/10.1007/s11746-997-0109-x
  20. T.A. Isbell, M.R. Edgcomb, B.A. Lowery, Industrial Crops and Products 13 (2001) 11. https://doi.org/10.1016/S0926-6690(00)00045-5
  21. S.C. Cermak, T.A. Isbell, Journal of the American Oil Chemists' Society 78 (2001) 557. https://doi.org/10.1007/s11746-001-0304-1
  22. S.C. Cermak, T.A. Isbell, Industrial Crops and Products 18 (2003) 183. https://doi.org/10.1016/S0926-6690(03)00061-X
  23. S.C. Cermak, K.B. Brandon, T.A. Isbell, Industrial Crops and Products 23 (2006) 54. https://doi.org/10.1016/j.indcrop.2005.04.001
  24. G. Biresaw, S.C. Cermak, T.A. Isbell, Tribology Letters 27 (2007) 69. https://doi.org/10.1007/s11249-007-9207-z
  25. J. Salimon, N. Nallathamby, N. Salih, B.A. Mudhaffar, Journal of Automated Methods and Management in Chemistry (2011) 263624.
  26. L. Yao, E.G. Hammond, T. Wang, S. Bhuyan, S. Sundararajan, Journal of the American Oil Chemists' Society 87 (2010) 937. https://doi.org/10.1007/s11746-010-1574-1
  27. Y. Yoshida, M. Kawase, C. Yamaguchi, T. Yamane, Journal of the American Oil Chemists' Society 74 (1997) 261. https://doi.org/10.1007/s11746-997-0133-x
  28. D.G. Hayes, R. Kleiman, Journal of the American Oil Chemists' Society 72 (1995) 1309. https://doi.org/10.1007/BF02546204
  29. T.A. Isbell, R. Kleiman, B.A. Plattner, Journal of the American Oil Chemists' Society 71 (1994) 169.
  30. S.M. Erhan, K. Robert, P.A. Thomas, Journal of the American Oil Chemists' Society 73 (1996) 563.
  31. A. Govindapillai, N.H. Jayadas, M. Bhasi, Lubrication Science 21 (2009) 13. https://doi.org/10.1002/ls.69
  32. M. Suzuki, T. Ogaki, K. Sato, Journal of the American Oil Chemists' Society 62 (1985) 1600. https://doi.org/10.1007/BF02541697
  33. M.R. Morselli, D.A. Barrera, C.G. Ferreira, Food Research International 47 (2012) 38. https://doi.org/10.1016/j.foodres.2012.01.007
  34. L.R. Rudnick, S.Z., Erhan, J.M. Perez, (Eds.), Bio-Based Industrial Fluids and Lubricants. Champaign, USA, AOCS Press, 2002.
  35. H. Mutlu, M. Meier, European Journal of Lipid Science and Technology 112 (2010) 10. https://doi.org/10.1002/ejlt.200900138
  36. R. Sanchez, J.M. Franco, M.A. Delgado, C. Valencia, C. Gallegos, Green Chemistry 11 (2009) 686. https://doi.org/10.1039/b820547g
  37. S. Sathivel, J. Huang, W. Prinyawiwatkul, Journal of Food Engineering 85 (2008) 187.
  38. D.F. Moore, Wear 35 (1975) 159. https://doi.org/10.1016/0043-1648(75)90150-7
  39. L. Bustein, Lubrication and roughness, in: J.P. Davim (Ed.), Tribology for Engineers: A Practical Guide, Woodhead Pub, Cambridge, 2011, p. 65.
  40. A. Moshkovich, V. Perfilyev, I. Lapsker, L. Rapoport, Tribology Letters 37 (2010) 645. https://doi.org/10.1007/s11249-009-9562-z
  41. K. Varga, P. Baradlai, W.O. Barnard, G. Myburg, P. Halmosg, J.H. Potgieter, Electrochimica Acta 42 (1997) 25. https://doi.org/10.1016/0013-4686(96)00163-6

Cited by

  1. Viscosity modification of high‐oleic sunflower and castor oils with acid oils‐derived estolides for lubricant applications vol.115, pp.10, 2013, https://doi.org/10.1002/ejlt.201300066
  2. Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications vol.6, pp.7, 2013, https://doi.org/10.3390/polym6071929
  3. 지방산 기반 에스토라이드 합성 및 윤활특성 vol.30, pp.5, 2013, https://doi.org/10.9725/kstle.2014.30.5.256
  4. 식물유 기반 에스토라이드 합성 및 윤활 특성 vol.31, pp.5, 2013, https://doi.org/10.9725/kstle.2015.31.5.195
  5. Tribological Properties of the Castor Oil Affected by the Additive of the Ionic Liquid [HMIM]BF4 vol.138, pp.1, 2013, https://doi.org/10.1115/1.4031081
  6. Synthesis, Characterization, and Evaluation of Castor Oil-Based Acylated Derivatives as Potential Lubricant Base Stocks vol.55, pp.34, 2013, https://doi.org/10.1021/acs.iecr.6b01550
  7. Suitable additives for vegetable oil‐based automotive shock absorber fluids: an overview vol.28, pp.6, 2013, https://doi.org/10.1002/ls.1337
  8. Oleate-Based Protic Ionic Liquids As Lubricants for Aluminum 1100 vol.57, pp.37, 2013, https://doi.org/10.1021/acs.iecr.8b02426
  9. Experimental investigation on the rheological properties of castor oil at different temperatures vol.232, pp.7, 2013, https://doi.org/10.1177/1350650117732717
  10. Sustainable Fabrication of Plant Cuticle-Like Packaging Films from Tomato Pomace Agro-Waste, Beeswax, and Alginate vol.6, pp.11, 2013, https://doi.org/10.1021/acssuschemeng.8b03450
  11. New synthetic route for polyricinoleic acid with Tin (II) 2-ethylhexanoate vol.5, pp.6, 2013, https://doi.org/10.1016/j.heliyon.2019.e01944
  12. Magnetic Colloidal Particles in Combinatorial Thin-Film Gradients for Magnetic Resonance Imaging and Hyperthermia vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/7163985
  13. Bio-Based Polyricinoleate and Polyhydroxystearate: Properties and Evaluation as Viscosity Modifiers for Lubricants vol.3, pp.2, 2013, https://doi.org/10.1021/acsapm.0c01153
  14. In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology vol.9, pp.3, 2013, https://doi.org/10.3390/lubricants9030027
  15. Open-cell polyurethane foams of very low density modified with various palm oil-based bio-polyols in accordance with cleaner production vol.290, pp.None, 2013, https://doi.org/10.1016/j.jclepro.2021.125875
  16. Palm Oil-Based Chemicals for Sustainable Development of Petrochemical Industries in Malaysia: Progress, Prospect, and Challenges vol.9, pp.19, 2013, https://doi.org/10.1021/acssuschemeng.0c09329
  17. Synthesis of (hemi)cellulosic lubricant base oils via catalytic coupling and deoxygenation pathways vol.23, pp.14, 2021, https://doi.org/10.1039/d1gc00429h
  18. The Catalysed Transformation of Vegetable Oils or Animal Fats to Biofuels and Bio-Lubricants: A Review vol.11, pp.9, 2021, https://doi.org/10.3390/catal11091118