DOI QR코드

DOI QR Code

Spectrophotometric studies of photo-induced degradation of Tertrodirect Light Blue (TLB) using a nanostructure zinc zirconate composite

  • Habibi, Mohammad Hossein (Nanotechnology Laboratory, Department of Chemistry, University of Isfahan) ;
  • Askari, Elham (Nanotechnology Laboratory, Department of Chemistry, University of Isfahan)
  • Published : 2013.07.25

Abstract

Zinc zirconate nanopowder (ZZN) photocatalyst was prepared by sol-gel method using zinc acetate and zirconium acetylacetonate as precursors. The optimal calcination temperature was $800^{\circ}C$ and $ZnZrO_3$ phase was formed. The structural and morphology properties of the nanocomposite were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDAX) and ultraviolet visible diffuse reflectance (UV-DRS). The SEM observation for ZZN showed the average grain size of 26 nm. UV-vis diffuse reflectance spectra (DRS) of the nanocomposite showed an absorption edge at 355 nm. The catalytic activity of ZZN was investigated by degradation of Tertrodirect Light Blue (TLB) dye in water using UV-vis spectroscopy (UV-vis) with an initial concentration of 20 mg/L dye. The influence of the catalyst concentration, time of irradiation and pH on photodegradation of dye was investigated. The results showed that degradation of TLB dye can be conducted in the photocatalytic process. Accordingly, a degradation of more than 97% of dye was achieved by applying the optimal operational parameters with 30 mg/L of catalyst, pH 9 at 1 h irradiation.

Keywords

References

  1. A. Reife, H.S. Fremann, Environmental Chemistry of Dyes and Pigments, Wiley, New York, 1996.
  2. U.G. Akpan, B.H. Hameed, Journal of Hazardous Materials 170 (2009) 520. https://doi.org/10.1016/j.jhazmat.2009.05.039
  3. H. Zollinger (Ed.), Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd revised ed., VCH, New York, 1991.
  4. J. Weber, V.C. Stickney, Water Research 27 (1993) 63. https://doi.org/10.1016/0043-1354(93)90195-N
  5. U. Pagga, D. Bruan, Chemosphere 15 (1986) 479. https://doi.org/10.1016/0045-6535(86)90542-4
  6. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Chemosphere 46 (2002) 1173. https://doi.org/10.1016/S0045-6535(01)00284-3
  7. D. Chen, A.K. Ray, Chemical Engineering Science 56 (2001) 1561. https://doi.org/10.1016/S0009-2509(00)00383-3
  8. M. Farooq, I.A. Raja, A. Pervez, Solar Energy 83 (2009) 1527. https://doi.org/10.1016/j.solener.2009.04.009
  9. M.Y. Chang, Y.H. Hsieh, T.C. Cheng, K.S. Yao, M.C. Wei, C.Y. Chang, Thin Solid Films 517 (2009) 3888. https://doi.org/10.1016/j.tsf.2009.01.175
  10. T. Robinson, G. Mcmullan, R. Marchant, P. Nigam, Bioresource Technology 77 (2001) 225.
  11. P.P. Zamora, A. Kunz, S.G. Moraes, R. Pelegrini, P.V. Moleiro, J. Reyes, N. Duran, Chemosphere 38 (1999) 835. https://doi.org/10.1016/S0045-6535(98)00227-6
  12. S. Ledakowicz, M. Solecka, R. Zylla, Journal of Biotechnology 89 (2001) 175. https://doi.org/10.1016/S0168-1656(01)00296-6
  13. D. Georgiou, P. Melidis, A. Aivasidis, K. Gimouhopoulos, Dyes and Pigments 52 (2002) 69. https://doi.org/10.1016/S0143-7208(01)00078-X
  14. K.H. Gregor, in: W. Eckenfelder, A.J. Bowers, Roth (Eds.), Chemical Oxidation Technologies for the Nineties, vol. 2, Technomic Publications Co., Lancaster, Basel, 1994, p. 161.
  15. M. Khoshnood, S. Azizian, Journal of Industrial and Engineering Chemistry (2012), http://dx.doi.org/10.1016/j.jiec.2012.04.007.
  16. M.H. Habibi, R. Sheibani, Journal of Industrial and Engineering Chemistry (2012), http://dx.doi.org/10.1016/j.jiec.2012.07.019.
  17. S. Jeon, J. Yun, Y.-S. Lee, H.-I. Kim, Journal of Industrial and Engineering Chemistry 18 (2011) 481.
  18. Z.-D. Meng, L. Zhu, W.-C. Oh, Journal of Industrial and Engineering Chemistry (2012), http://dx.doi.org/10.1016/j.jiec.2012.05.019.
  19. M. Ghaedi, Spectrochimica Acta: Part A 94 (2012) 346. https://doi.org/10.1016/j.saa.2012.02.097
  20. M.H. Habibi, M. Nasr-Esfahani, G. Emtiazi, B. Hosseinkhani, Current Nanoscience 6 (2010) 324. https://doi.org/10.2174/157341310791171180
  21. M. Ghaedi, A. Hekmati Jah, S. Khodadoust, R. Sahraei, A. Daneshfar, A. Mihandoost, M.K. Purkait, Spectrochimica Acta: Part A 90 (2012) 22. https://doi.org/10.1016/j.saa.2011.12.064
  22. M.H. Habibi, R. Sheibani, Journal of Advanced Oxidation Technologies 13 (2010) 192.
  23. I. Konstantinou, T. Albanis, Applied Catalysis B 49 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.11.010
  24. M.H. Habibi, S. Tangestaninejad, B. Yadollahi, Applied Catalysis B 33 (2001) 57. https://doi.org/10.1016/S0926-3373(01)00158-8
  25. M. Lapertot, S. Ebrahimi, S. Dazio, A. Rubinelli, C. Pulgarin, Journal of Photochemistry and Photobiology A 186 (2007) 34.
  26. M. Ghaedi, M. Nejati-Biyareh, S. Nasiri-Kokhdan, S. Shamsaldini, R. Sahraei, A. Daneshfar, S. Shahriyar, Materials Science and Engineering C 32 (2012) 725. https://doi.org/10.1016/j.msec.2012.01.015
  27. S.H. Song, H.P. Ying, Z.P. He, J.M. Chen, Chemosphere 66 (2007) 1782. https://doi.org/10.1016/j.chemosphere.2006.07.090
  28. Y.C. Lin, S.H. Liu, H.R. Syu, T.H. Ho, Spectrochim Acta: Part A 95 (2012) 300-304. https://doi.org/10.1016/j.saa.2012.03.080
  29. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnamann, Chemical Reviews 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  30. A.L. Linsebigler, G. Lu, T.J. Yates, Chemical Reviews 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  31. M. Vishwas, K.N. Rao, K.V. Arjuna Gowda, R.P.S. Chakradhar, Spectrochimica Acta: Part A 83 (2011) 614. https://doi.org/10.1016/j.saa.2011.08.009
  32. J.J. Wu, S.C. Liu, Advanced Materials 14 (2002) 215. https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  33. M. Purica, E. Budianu, E. Rusu, Microelectronic Engineering 51-52 (2000) 425. https://doi.org/10.1016/S0167-9317(99)00492-X
  34. A. Belaidi, Th. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.C. Lux-Steiner, S. Gavrilov, Solar Energy Materials and Solar Cells 93 (2009) 1033. https://doi.org/10.1016/j.solmat.2008.11.035
  35. D.C. Kim, W.S. Han, B.H. Kong, H.K. Cho, C.H. Hong, Physica B 401-402 (2007) 386. https://doi.org/10.1016/j.physb.2007.08.194
  36. J. Joo, D. Lee, M. Yoo, S. Jeon, Actuators B 138 (2009) 485. https://doi.org/10.1016/j.snb.2009.03.017
  37. O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel, S. Icli, Journal of Photochemistry and Photobiology A 165 (2004) 103. https://doi.org/10.1016/j.jphotochem.2004.03.005
  38. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Journal of Physics D: Applied Physics 42 (2009) 225305. https://doi.org/10.1088/0022-3727/42/22/225305
  39. C.C. Wang, Z. Zhang, J.Y. Ying, Nanostructured Materials 9 (1997) 583. https://doi.org/10.1016/S0965-9773(97)00130-X
  40. M.H. Habibi, M. Mikhak, Current Nanoscience 7 (2011) 603. https://doi.org/10.2174/157341311796196754
  41. M.H. Habibi, R. Mokhtari, Journal of Sol-Gel Science and Technology 59 (2011) 352. https://doi.org/10.1007/s10971-011-2510-z
  42. A. Kathiravan, M. Chandramohan, R. Renganathan, S. Sekar, Spectrochimica Acta: Part A 71 (2009) 1783. https://doi.org/10.1016/j.saa.2008.06.031
  43. M.H. Habibi, M. Zendehdel, Journal of Inorganic and Organometallic Polymers 21 (2011) 634. https://doi.org/10.1007/s10904-011-9500-z
  44. M.H. Habibi, R. Kamrani, R. Mokhtari, Microchimica Acta 171 (2010) 91. https://doi.org/10.1007/s00604-010-0413-2
  45. M.H. Habibi, M. Zendehdel, Current Nanoscience 6 (2010) 642. https://doi.org/10.2174/157341310793348614
  46. M.H. Habibi, R. Sheibani, Journal of Sol-Gel Science and Technology 54 (2010) 195. https://doi.org/10.1007/s10971-010-2177-x
  47. T. Lindgren, J.M. Mwabora, E. Avedano, J. Jonsson, A. Hoel, C.G. Granquist, S.E. Lindquist, Journal of Physical Chemistry B 107 (2003) 5709. https://doi.org/10.1021/jp027345j
  48. M.H. Habibi, E. Askari, Journal of Thermal Analysis and Calorimetry (2012), http://dx.doi.org/10.1007/s10973-012-2205-x.
  49. P.L. Provenzano, G.R. Jindal, J.R. Sweet, W.B. White, Journal of Luminescence 92 (2001) 297. https://doi.org/10.1016/S0022-2313(00)00264-7
  50. G. Ramakrishna, H.N. Ghosh, Langmuir 19 (2003) 3006. https://doi.org/10.1021/la020828u
  51. E.M. Wong, P.C. Searson, Applied Physics Letters 74 (1999) 2939. https://doi.org/10.1063/1.123972
  52. C. Galindo, P. Jacques, A. Kalt, Chemosphere 45 (2001) 997. https://doi.org/10.1016/S0045-6535(01)00118-7
  53. L.C. Chen, T.C. Chou, Industrial and Engineering Chemistry Research 32 (1993) 1520. https://doi.org/10.1021/ie00019a028
  54. Z. Junbo, M. Dia, Z. Hongb, L. Minjiao, X. Bin, L. Jianzhang, Journal of Molecular Catalysis A 283 (2008) 93. https://doi.org/10.1016/j.molcata.2007.12.010

Cited by

  1. Phototocatalytic decolorization of 5-[4-(dimethylamino) phenylmethylene]-2-thioxo-4-thiazolidinone using nano-powder zinc oxide at various basic buffer pHs vol.52, pp.40, 2013, https://doi.org/10.1080/19443994.2013.836997
  2. Structural Characterization and Optical Properties of Perovskite ZnZrO3 Nanoparticles vol.97, pp.6, 2013, https://doi.org/10.1111/jace.12883
  3. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/692307
  4. Fabrication and Spectral Properties of Zinc Zirconate Nanorod Composites by Sol-Gel Method for Optical Applications: Effect of Chloride and Oxychloride Precursors and Sintering Temperature on Band Gap vol.45, pp.2, 2013, https://doi.org/10.1080/15533174.2013.831894
  5. Preparation of a Novel Zinc Zirconate Nanocomposite Coated on Glass for Removal of a Textile Dye (Reactive Brilliant Red X8B) From Water vol.45, pp.10, 2015, https://doi.org/10.1080/15533174.2013.862821
  6. Synergic Effects of Photocatalytic and Enzymatic Degradation of Dibenzothiophene by Titania Nanolayer Coated on Glass and Intracellular Enzymes vol.45, pp.12, 2013, https://doi.org/10.1080/15533174.2013.871733
  7. Synergic Effects of Photocatalytic and Enzymatic Degradation of Dibenzothiophene by Titania Nanolayer Coated on Glass and Intracellular Enzymes vol.45, pp.12, 2013, https://doi.org/10.1080/15533174.2013.871733
  8. Fabrication and Characterization of CuCr2O4 Nanocomposite by XRD, FESEM, FTIR, and DRS vol.46, pp.6, 2013, https://doi.org/10.1080/15533174.2014.989591
  9. Performance of Bifunctional ZnZr/ZSM-5 Catalysts in the Alkylation of Benzene with Syngas vol.148, pp.12, 2018, https://doi.org/10.1007/s10562-018-2570-6