DOI QR코드

DOI QR Code

Simultaneous Synthesis and Consolidation of Nanocrystalline $Fe_2Al_5$ and $Fe_2Al_5-Al_2O_3$ by Pulsed Current Activated Sintering and Their Mechanical Properties

  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials, Engineering College, Chonbuk National University) ;
  • Na, Kwon-Il (Division of Advanced Materials Engineering and the Research Center of Advanced Materials, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Park, Hyun-Kuk (Division of Advanced Materials Engineering and the Research Center of Advanced Materials, Engineering College, Chonbuk National University) ;
  • Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology)
  • Published : 2013.01.20

Abstract

Nanopowders of Fe, Al and $Fe_2O_3$ are fabricated by high energy ball milling. Using the pulsed current activated sintering method, the densification of nanocrystalline $Fe_2Al_5$ and $Al_2O_3$ reinforced $Fe_2Al_5$ composites were simultaneously synthesized and consolidated within two minutes from mechanically activated powders. The advantage of this process is that it allows very quick densification to near theoretical density and prohibition of grain growth in nanostuctured materials. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid to the application of nanomaterials. Not only the hardness but also the fracture toughness of the $Fe_2Al_5-Al_2O_3$ composite was higher than that of monolithic $Fe_2Al_5$ due to the addition of the hard phase of $Al_2O_3$ and the crack deflection by $Al_2O_3$.

Keywords

References

  1. C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, Mater. Sci. Eng. A 258, 84 (1998). https://doi.org/10.1016/S0921-5093(98)00921-6
  2. S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996). https://doi.org/10.1016/0966-9795(95)00056-9
  3. L. Zheng, X. Peng, and F. Wang, Corros. Sci. 53, 597 (2011). https://doi.org/10.1016/j.corsci.2010.10.003
  4. A. Michalski, J. Jaroszewicz, M. Rosinski, and D. Siemiaszko, Intermetallics 14, 603 (2006). https://doi.org/10.1016/j.intermet.2005.10.003
  5. L. Z. Zhou, J. T. Guo, G. S. Li, L.Y. Xiong, S. H. Wang, and C. G. Li, Mater. Des. 18, 373 (1997). https://doi.org/10.1016/S0261-3069(97)00079-4
  6. M. F. Ashby and D. R. H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology, Vol.34), Pergamon Press, Oxford (1986).
  7. M. S. El-Eskandarany, Alloys. Compd. 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  8. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Materialia. 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  9. N.-R. Park, I.-Y. Ko, J.-K. Yoon, J.-M. Doh, and I.-J. Shon, Met. Mater. Int. 17, 233 (2011). https://doi.org/10.1007/s12540-011-0408-5
  10. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  11. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A. 383, 229 (2004-2005).
  12. J. Jung and S. Kang, Scripta Materialia 56, 561 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.026
  13. I.-J. Shon, H.-Y. Song, S.-W. Cho, W. Kim, and C.-Y. Suh, Korean J. Met. Mater. 50, 39 (2012). https://doi.org/10.3365/KJMM.2012.50.1.039
  14. I.-J. Shon, H.-J. Wang, C.-Y. Suh, S.-W. and W. Kim, Korean. J. Met. Mater. 49, 374 (2011).
  15. C. Suryanarayana, M. G. Norton, X-ray Diffraction A Practical Approach, Plenum Press, p. 213, New York (1998).
  16. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  17. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  18. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  19. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  20. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2

Cited by

  1. Rapid Synthesis and Consolidation of a Nanostructured Mg0.6Al0.8Ti1.6O5 Compound by Pulsed Current Activated Heating vol.54, pp.11, 2013, https://doi.org/10.2320/matertrans.m2013255
  2. Pulsed Current Activated Synthesis and Consolidation of Nanostructured MoSi2–NbSi2 Composite and Its Mechanical Properties vol.55, pp.2, 2013, https://doi.org/10.2320/matertrans.m2013341
  3. 고주파 유도 가열에 의한 나노구조 Mg4Al2Ti9O25 합성 및 소결과 기계적 성질 vol.24, pp.2, 2013, https://doi.org/10.3740/mrsk.2014.24.2.67
  4. Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties vol.24, pp.4, 2013, https://doi.org/10.3740/mrsk.2014.24.4.180
  5. Effect of Cu addition on microstructure and mechanical properties of Fe-2 wt-%Ni alloy processed by metal injection moulding vol.18, pp.2, 2014, https://doi.org/10.1179/1432891714z.000000000541
  6. Influence of sintering temperature on microstructure and mechanical properties of Fe-2Ni-2Cu alloy processed by metal injection moulding vol.18, pp.2, 2013, https://doi.org/10.1179/1432891714z.000000000542
  7. Simultaneous Synthesis and Consolidation of Nanostructured MgSiO3–Mg3Al2Si3O12 Composite and Its Mechanical Properties vol.55, pp.7, 2013, https://doi.org/10.2320/matertrans.m2014018
  8. Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating vol.25, pp.1, 2015, https://doi.org/10.3740/mrsk.2015.25.1.48