DOI QR코드

DOI QR Code

Improvement of Hydrogen-Storage Properties of $MgH_2$ by Addition of Ni and Ti via Reactive Mechanical Grinding and a Rate-Controlling Step in Its Dehydriding Reaction

  • Song, Myoung Youp (Chonbuk National University, Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute) ;
  • Kwak, Young Jun (Chonbuk National University, Department of Materials Engineering, Graduate School) ;
  • Lee, Seong Ho (Chonbuk National University, Department of Materials Engineering, Graduate School) ;
  • Park, Hye Ryoung (Chonnam National University, School of Applied Chemical Engineering) ;
  • Kim, Byoung-Goan (Korea Energy Materials Ltd.)
  • Published : 2013.07.20

Abstract

In a shift from prior work, $MgH_2$, instead of Mg, was used as a starting material in this work. A sample with a composition of 86 wt% $MgH_2-10$ wt% Ni-4 wt% Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. The effects of reactive mechanical grinding of Mg with Ni and Ti were discussed. The formation of $Mg_2Ni$ increased the hydriding and dehydriding rates of the sample. The addition of Ti increased the hydriding rate and greatly increased the dehydriding rate of the sample. The titanium hydride, $TiH_{1.924}$, was formed during reactive mechanical grinding. This titanium hydride, which is brittle, is thought to help the mixture pulverized by being pulverized during reactive mechanical grinding and further to prevent agglomeration of the magnesium by staying as a hydride among Mg particles. A rate-controlling step for the dehydriding reaction of the hydrided $MgH_2-10Ni-4Ti$ was analyzed by using a spherical moving boundary model on an assumption that particles have a spherical shape with a uniform diameter.

Keywords

References

  1. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 51, 119 (2013).
  2. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).
  3. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  5. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  6. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  8. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011). https://doi.org/10.1016/j.jallcom.2010.11.072
  9. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.082
  10. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  11. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  12. M. Lucaci, A. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd. 488, 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  13. Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25(Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  14. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  15. Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  16. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  17. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  18. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  19. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  20. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985). https://doi.org/10.1016/0360-3199(85)90024-2
  21. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987). https://doi.org/10.1016/0022-5088(87)90502-9
  22. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  23. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  24. W. Oelerich, T. Klassen, and R. Bormann, J. Alloy Compd. 322, L5 (2001). https://doi.org/10.1016/S0925-8388(01)01173-2
  25. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloy Compd. 347, 319(2002). https://doi.org/10.1016/S0925-8388(02)00784-3
  26. G. Barkhordarian, T. Klassen, and R. Bormann, Scr. Materialia 49, 213 (2003). https://doi.org/10.1016/S1359-6462(03)00259-8
  27. G. Barkhordarian, T. Klassen, and R. Bormann, J. Alloy Compd. 407, 249(2006). https://doi.org/10.1016/j.jallcom.2005.05.037
  28. K. F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen, and R. Bormann, Mater. Res. Bull. 41, 1118 (2006). https://doi.org/10.1016/j.materresbull.2005.11.011
  29. O. Friedrichs, T. Klassen, J. C. Sanchez-Lopez, R. Bormann, and A. Fernandez, Scr. Materialia 54, 1293 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.011
  30. O. Friedrichs, F. Aguey-Zinsou, J. R. Ares Fernandez, J. C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, and A. Fernndez, Acta Mater. 54, 105 (2006). https://doi.org/10.1016/j.actamat.2005.08.024
  31. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scripta Mater. 52, 719(2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
  32. M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999). https://doi.org/10.1007/BF03026163
  33. A. Karty, J. Grunzweig-Genossar, and P. S. Rudman, J. Appl. Phys. 50, 7200 (1979). https://doi.org/10.1063/1.325832
  34. C. M. Stander, J. Inorg. Nucl. Chem. 39, 221 (1977). https://doi.org/10.1016/0022-1902(77)80003-1
  35. C. N. Park and J. Y. Lee, J. Less-Common Met. 83, 39 (1982). https://doi.org/10.1016/0022-5088(82)90169-2
  36. M. Y. Song and J. Y. Lee, Int. J. Hydrogen Energy 8, 363 (1983). https://doi.org/10.1016/0360-3199(83)90051-4

Cited by

  1. Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding vol.24, pp.3, 2013, https://doi.org/10.3740/mrsk.2014.24.3.129
  2. Gas Absorption and Release Properties of Zn(BH4)2 and MgH2-Zn(BH4)2-Ni-Ti-Fe Alloy vol.25, pp.1, 2013, https://doi.org/10.3740/mrsk.2015.25.1.43
  3. Preparation of an additive-free sample with a MgH2 phase by planetary ball milling of Mg with10 wt% MgH2 vol.22, pp.6, 2013, https://doi.org/10.1007/s12540-016-6329-6
  4. Advancement in the Hydrogen Absorbing and Releasing Kinetics of MgH2 by Mixing with Small Percentages of Zn(BH4)2 and Ni vol.24, pp.2, 2013, https://doi.org/10.1007/s12540-018-0036-4