DOI QR코드

DOI QR Code

Fabrication and Optical Characterization of a Porous Silicon Distributed Bragg Reflector

  • Published : 2013.01.15

Abstract

This study examine the reflection band characteristics of a distributed Bragg reflector (DBR) porous silicon (PSi) and the effect of etching time on the formation of the Bragg photonic structure. A PSi DBR with the Bragg filter photonic structure was fabricated using a computer-generated square current density wave. The multilayered photonic crystals of the PSi DBR exhibited a specific wavelength reflection with high reflectivity in the optical spectrum. This reflective wavelength was controlled by adjusting the etching time and depending on the waveform, could be observed throughout the entire visible range. These results are important for the fabrication of specific reflectors and full-color filters. We further investigated the effect of the current density's waveform on the formation of the PSi DBR. We found that as the etching time was increased, the reflection band of the PSi DBR shifted to longer wavelength by about 150 nm. The reflection band characteristics of 16 PSi DBR samples for various current densities were investigated in more detail. We established that the PSi DBR exhibited linear dependence of the reflection wavelength on the current density.

Keywords

References

  1. V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi and W. Bulovic, Adv. Mater. 21, 2151 (2009). https://doi.org/10.1002/adma.200803256
  2. L. Qu and X. Peng, J. Am. Chem. Soc. 124, 2049 (2002). https://doi.org/10.1021/ja017002j
  3. X. G. Zhang, J. Elecrochem. Soc. 151, C69 (2004). https://doi.org/10.1149/1.1632477
  4. J. Park, S. Cho, H. Sohn and Y. C. Ko, J. Korean Phys. Soc. 50, 695 (2007). https://doi.org/10.3938/jkps.50.695
  5. Y. Koh, J. Park, J. Kim, S. Jang, H-G. Woo and H. Sohn, J. Nanosci. Nanotechnol. 10, 3590 (2010). https://doi.org/10.1166/jnn.2010.2250
  6. V. S.-Y. Lin, K. Motesharei, K.-P.-S. Dancil, M. J. Sailor and M. R. Ghadiri, Science 278, 840 (1997). https://doi.org/10.1126/science.278.5339.840
  7. S. Jang, J. Kim, Y. Koh, Y. C. Ko, H.-G. Woo and H. Sohn, J. Nanosci. Nanotechnol. 7, 4049 (2007). https://doi.org/10.1166/jnn.2007.096
  8. S. Jang, Y. Koh, J. Kim, J. Park, C. Park, S. J. Kim, S. Cho, Y. C. Ko and H. Sohn, Mater. Lett. 62, 552 (2008). https://doi.org/10.1016/j.matlet.2007.06.009
  9. Y. Koh, S. J. Kim, J. Park, C. Park, S. Cho, H.-W. Woo, Y. C. Ko and H. Sohn, Bull. Korean Chem. Soc. 28, 2083 (2007). https://doi.org/10.5012/bkcs.2007.28.11.2083
  10. J. Park, Y. Koh, Y. C. Ko and H. Sohn, Bull. Korean Chem. Soc. 30, 1583 (2009). https://doi.org/10.5012/bkcs.2009.30.7.1583
  11. V. Lehmann, R. Stengl, H. Reisinger, R. Detemple and W. Theiss, Appl. Phys. Lett. 78, 589 (2001). https://doi.org/10.1063/1.1334943
  12. L. T. Canham, M. P. Stewart, J. M. Buriak, M. Anderson, E. K. Squire, P. Allcick and P. A. Snow, Phys. Status Solidi A 182, 521 (2000). https://doi.org/10.1002/1521-396X(200011)182:1<521::AID-PSSA521>3.0.CO;2-7
  13. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. C. Sangeeta and M. J. Sailor, Science 299, 2045 (2003). https://doi.org/10.1126/science.1081298
  14. C. Park, J. Kim, S. Jang, H.-G. Woo, Y. C. Ko and H. Sohn, J. Nanosci. Nanotechnol. 10, 3375 (2010). https://doi.org/10.1166/jnn.2010.2258
  15. E. J. Anglin, L. Cheng, W. R. Freeman and M. J. Sailor, Adv. Drug Deliver Rev. 60, 1266 (2008). https://doi.org/10.1016/j.addr.2008.03.017
  16. J. Kim, S. Jang, Y. Koh, C. Park, H.-G. Woo, S. Kim and H. Sohn, J. Nanosci. Nanotechnol. 8, 4951 (2008). https://doi.org/10.1166/jnn.2008.1246
  17. M. A. Khan, M. S. Haque, H. A. Naseem. W. K. Brown and A. P. Malshe, Thin Solid Films 332, 93 (1998). https://doi.org/10.1016/S0040-6090(98)01209-7
  18. S. E. Letant, S. Content, T. T. Tan, F. Zenhausern and M. J. Sailor, Sens. Actuators, A 69, 193 (2000). https://doi.org/10.1016/S0925-4005(00)00539-6
  19. D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso and H. Luth, J. Lumines. 80, 133 (1998). https://doi.org/10.1016/S0022-2313(98)00082-9
  20. M. Haurylau, A. R. Shroff and P. M. Fauchet, Phys. Status Solidi A 202, 1477 (2005). https://doi.org/10.1002/pssa.200461146
  21. C. Mazzoleni and L. Paves, Appl. Phys. Lett. 67, 2083 (1995).
  22. S. G. Kim, S. Kim, Y. C. Ko, S. Cho and H. Sohn, Colloids Surf., A 313, 398 (2008).
  23. Y. Koh, S. Jang, J. Kim, S. Kim, Y. C. Ko, S. Cho and H. Sohn, Colloids Surf., A 313, 328 (2008).
  24. M. Cazzanelli, C. Vinegoni and L. Pavesi, J. Appl. Phys. 85, 1760 (1999). https://doi.org/10.1063/1.369320

Cited by

  1. 다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법 vol.24, pp.6, 2013, https://doi.org/10.5369/jsst.2015.24.6.385