DOI QR코드

DOI QR Code

Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel

Raja, Jayapal;Jang, Kyungsoo;Nguyen, Hong Hanh;Trinh, Thanh Thuy;Choi, Woojin;Yi, Junsin

  • Published : 20130100

Abstract

a-IGZO films were deposited on Si substrates by d.c sputtering technique with various working power densities ($p_d$) in the range of $0.74-2.22W/cm^2$. The correlation between material properties and their effects on electrical stability of a-IGZO thin-film transistor (TFTs) was studied as a function of $p_d$. At a $p_d$ of $1.72W/cm^2$ a-IGZO film had smoothest surface roughness (0.309 nm) with In-rich and Ga-poor cation compositions as a channel. This structurally ordered TFTs exhibited a high field effect mobility of $9.14cm^2/Vs$, a sub-threshold swing (S.S.) of 0.566 V/dec, and an oneoff ratio of $10^7$. Additionally, the $V_{th}$ shift in hysteresis loop is almost eliminated. It was shown that the densification of the a-IGZO film resulted in the reduction of its interface trap density ($1.83{\times}10^{12}cm^{-2}$), which contributes for the improvement in the electrical and thermal stability.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432 (2004) 488-492. https://doi.org/10.1038/nature03090
  2. J.H. Jeong, H.W. Yang, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid-State Lett. 11 (2008) H157-H159. https://doi.org/10.1149/1.2903209
  3. J.K. Jeong, J.H. Jeong, H.W. Yang, J.S. Park, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 91 (2007) 113505-113505-3. https://doi.org/10.1063/1.2783961
  4. B. Kim, E. Chong, D.H. Kim, Y.W. Jeon, D.H. Kim, S.Y. Lee, Appl. Phys. Lett. 99 (2011) 062108-062108-3. https://doi.org/10.1063/1.3615304
  5. M. Clin, O. Durand-Drouhin, A. Zeinert, J.C. Picot, Diam. Relat. Mater. 8 (1999) 527-531. https://doi.org/10.1016/S0925-9635(98)00404-X
  6. H.Z. Zhang, H.T. Cao, A.H. Chen, L.Y. Liang, Z.M. Liu, Q. Wan, Solid-State Electron. 54 (2010) 479-483. https://doi.org/10.1016/j.sse.2009.12.025
  7. I.C. Cheng, S. Allen, S. Wagner, J. Non Cryst. Solids 338-340 (2004) 720-724. https://doi.org/10.1016/j.jnoncrysol.2004.03.076
  8. W.F. Wu, B.S. Chiou, S.T. Hsieh, Semicond. Sci. Technol. 9 (1994) 1242. https://doi.org/10.1088/0268-1242/9/6/014
  9. T.T. Trinh, V.D. Nguyen, K. Ryu, K. Jang, W. Lee, S. Baek, J. Raja, J. Yi, Semicond. Sci. Technol. 26 (2011) 085012. https://doi.org/10.1088/0268-1242/26/8/085012
  10. L. Yuan, G. Fang, X. Zou, H. Huang, H. Zou, X. Han, Y. Gao, S. Xu, X. Zhao, J. Phys. D: Appl. Phys. 42 (2009) 215301. https://doi.org/10.1088/0022-3727/42/21/215301
  11. K.M. Karuppasamy, A. Subrahmanyam, J. Phys. D: Appl. Phys. 42 (2009) 095301. https://doi.org/10.1088/0022-3727/42/9/095301
  12. N. Martin, D. Baretti, C. Rousselot, J.-Y. Rauch, Surf. Coat. Technol. 107 (1998) 172-182. https://doi.org/10.1016/S0257-8972(98)00647-1
  13. H.H.Z. Massoud, H.M. Przewlocki, Appl. Phys. Lett. 92 (2002) 2202-2206.
  14. R. Sharma, K. Sehrawat, A. Wakahara, R.M. Mehra, Appl. Surf. Sci. 255 (2009) 5781-5788. https://doi.org/10.1016/j.apsusc.2009.01.004
  15. W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255 (2009) 5669-5673. https://doi.org/10.1016/j.apsusc.2008.12.021
  16. J.M. Lee, B.H. Choi, M.J. Ji, J.H. Park, J.H. Kwon, B.K. Ju, Semicond. Sci. Technol. 24 (2009) 055008. https://doi.org/10.1088/0268-1242/24/5/055008
  17. J.X. Wang, S.J. Kwon, E.S. Cho, Microelectron. Eng. 95 (2012) 107-111. https://doi.org/10.1016/j.mee.2012.02.003
  18. H. Hosono, J. Non Cryst. Solids 352 (2006) 851-858. https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  19. M.K. Ryu, S. Yang, S.H.K. Park, C.-S. Hwang, J.K. Jeong, Appl. Phys. Lett. 95 (2009) 072104. https://doi.org/10.1063/1.3206948
  20. A.C. Galca, G. Socol, V. Craciun, Thin Solid Films 520 (2012) 4722-4725. https://doi.org/10.1016/j.tsf.2011.10.194
  21. C.H. Ahn, B.H. Kong, H. Kim, H.K. Cho, J. Electrochem. Soc. 158 (2011) H170-H173. https://doi.org/10.1149/1.3525278
  22. Chih Tsung, L. Po Tsun, C. Ting Chang, W. Chen Wen, Y. Po Yu, Y. Fon Shan, IEEE Electron Device Lett. 28 (2007) 584-586. https://doi.org/10.1109/LED.2007.897869
  23. C.J. Ku, Z. Duan, P.I. Reyes, Y. Lu, Y. Xu, C.L. Hsueh, E. Garfunkel, Appl. Phys. Lett. 98 (2011) 123511-123513. https://doi.org/10.1063/1.3567533

Cited by

  1. Hydrogenated IGZO Thin-Film Transistors Using High-Pressure Hydrogen Annealing vol.60, pp.8, 2013, https://doi.org/10.1109/ted.2013.2265326
  2. The effect of a zinc–tin-oxide layer used as an etch-stopper layer on the bias stress stability of solution-processed indium–gallium–zinc-oxide thin-film transistors vol.47, pp.38, 2013, https://doi.org/10.1088/0022-3727/47/38/385104
  3. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition vol.64, pp.10, 2013, https://doi.org/10.3938/jkps.64.1514
  4. Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구 vol.27, pp.7, 2013, https://doi.org/10.4313/jkem.2014.27.7.472
  5. Comprehensive Studies on the Carrier Transporting Property and Photo-Bias Instability of Sputtered Zinc Tin Oxide Thin Film Transistors vol.61, pp.9, 2013, https://doi.org/10.1109/ted.2014.2337307
  6. Fabrication of high-performance, low-temperature solution processed amorphous indium oxide thin-film transistors using a volatile nitrate precursor vol.3, pp.4, 2013, https://doi.org/10.1039/c4tc01568a
  7. Performance regeneration of InGaZnO transistors with ultra-thin channels vol.106, pp.9, 2013, https://doi.org/10.1063/1.4914296
  8. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process vol.5, pp.1, 2015, https://doi.org/10.1063/1.4905903
  9. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor vol.36, pp.2, 2015, https://doi.org/10.1088/1674-4926/36/2/024007
  10. Boosting the mobility and bias stability of oxide-based thin-film transistors with ultra-thin nanocrystalline InSnO:Zr layer vol.106, pp.3, 2013, https://doi.org/10.1063/1.4906159
  11. Printed In-Ga-Zn-O drop-based thin-film transistors sintered using intensely pulsed white light vol.5, pp.96, 2013, https://doi.org/10.1039/c5ra13573g
  12. Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review vol.16, pp.5, 2015, https://doi.org/10.4313/teem.2015.16.5.234
  13. Interface location-controlled indium gallium zinc oxide thin-film transistors using a solution process vol.49, pp.8, 2013, https://doi.org/10.1088/0022-3727/49/8/085301
  14. Composition-dependent structural and electrical properties of p-type SnOx thin films prepared by reactive DC magnetron sputtering: effects of oxygen pressure and heat treatment vol.6, pp.75, 2013, https://doi.org/10.1039/c6ra08726d
  15. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors vol.50, pp.2, 2017, https://doi.org/10.1088/1361-6463/50/2/025102
  16. Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation vol.110, pp.12, 2017, https://doi.org/10.1063/1.4978932
  17. Synthesis of Indium Complexes for Thin Film Transistor Applications Bearing N ‐Alkoxy Carboxamide Ligands vol.3, pp.23, 2013, https://doi.org/10.1002/slct.201801329
  18. Extraction method of trap densities for indium zinc oxide thin-film transistors processed by solution method vol.649, pp.None, 2013, https://doi.org/10.1016/j.tsf.2018.01.020
  19. Morphology Modulation of Direct Inkjet Printing by Incorporating Polymers and Surfactants into a Sol-Gel Ink System vol.34, pp.22, 2013, https://doi.org/10.1021/acs.langmuir.8b00745
  20. Synthesis of Amorphous InSb Nanowires and a Study of the Effects of Laser Radiation and Thermal Annealing on Nanowire Crystallinity vol.8, pp.8, 2013, https://doi.org/10.3390/nano8080607
  21. Solution-based SnGaO thin-film transistors for Zn- and In-free oxide electronic devices vol.113, pp.12, 2013, https://doi.org/10.1063/1.5046119
  22. Effect of Oxygen Pressure on Electrical Property of a-SZTO Thin Film Transistor vol.19, pp.6, 2018, https://doi.org/10.1007/s42341-018-0065-1
  23. Research Progress of InGaZnO Target and Thin Film vol.9, pp.3, 2019, https://doi.org/10.12677/hjcet.2019.93030
  24. Improved performance and stability of In-Sn-Zn-O thin film transistor by introducing a meso-crystalline ZrO2 high-k gate insulator vol.37, pp.2, 2013, https://doi.org/10.1116/1.5079834
  25. Investigating the interface characteristics of high-k ZrO2/SiO2 stacked gate insulator grown by plasma-enhanced atomic layer deposition for improving the performance of InSnZnO t vol.10, pp.1, 2013, https://doi.org/10.1063/1.5126151
  26. Improving device characteristics of IGZO thin-film transistors by using pulsed DC magnetron sputtering deposition vol.35, pp.2, 2013, https://doi.org/10.1088/1361-6641/ab592a
  27. High-Performance Photovoltaic Hydrogen Sensing Platform with a Light-Intensity Calibration Module vol.5, pp.4, 2013, https://doi.org/10.1021/acssensors.9b02565
  28. 스퍼터링 공정 압력이 InZnO 박막트랜지스터의 광학 및 전기적 특성에 미치는 영향 vol.30, pp.4, 2013, https://doi.org/10.3740/mrsk.2020.30.4.211
  29. P‐196: Late‐News‐Poster: Low‐Temperature All Sputter IGZO‐TFT Fabricated with Amorphous Metal Thin‐Films vol.51, pp.1, 2020, https://doi.org/10.1002/sdtp.14148
  30. Nanoscale surface engineering of a high-k ZrO2/SiO2 gate insulator for a high performance ITZO TFT via plasma-enhanced atomic layer deposition vol.8, pp.38, 2013, https://doi.org/10.1039/d0tc02419h