DOI QR코드

DOI QR Code

Synthesis, structural and optical properties of $Eu^{3+}$-doped $Ca_2V_2O_7$ nanophosphors

Taxak, V.B.;Sheetal, Sheetal;Dayawati, Dayawati;Khatkar, S.P.

  • Published : 20130500

Abstract

Europium doped calcium pyrovanadate nanoparticles $Ca_2V_2O_7:Eu^{3+}$, having a size of 57-63 nm, were synthesized using combustion process. Structure, morphological and optical properties of nano-phosphors have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescence spectrometry (PL) and Fourier transform infra-red (FT-IR) spectroscopy. X-ray studies shows that a pure triclinic $Ca_2V_2O_7$ phase was obtained at $900^{\circ}C$ temperature. The red emission observed at 620 nm upon excitation at 305 nm is due to hypersensitive transition $^5D_0\;{\rightarrow}\;^7F_2$ of luminescent activator $Eu^{3+}$ location at a site with no inversion symmetry in $Ca_2V_2O_7$ crystal lattice. High luminescent intensity and easy synthesis technique make this red phosphor a promising candidate for application as luminescent materials.

Keywords

References

  1. P. Yang, R.S. Huang, D. Kong, J. Lin, H. Fu, Inorg. Chem. 46 (2007) 3203. https://doi.org/10.1021/ic0622959
  2. D. Giaume, M. Poggi, D. Casanova, G. Mialon, K. Lahlili, A. Alexandru, T. Gacoin, J.P. Boilot, Langmuir 24 (2008) 11018. https://doi.org/10.1021/la8015468
  3. L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Angew. Chem. Int. Ed. 44 (2005) 6054. https://doi.org/10.1002/anie.200501907
  4. H.P. Zhang, M.K. Lu, Z.S. Yang, Z.L. Xiu, G.J. Zhou, S.F. Wang, Y.Y. Zhou, S.M. Wang, J. Alloys Compd. 426 (2006) 384. https://doi.org/10.1016/j.jallcom.2006.02.028
  5. W.L. Zhu, Y.Q. Ma, C. Zhai, K. Yang, X. Zhang, D.D. Wu, G. Li, G.H. Zheng, Opt. Mater. 33 (2011) 1162. https://doi.org/10.1016/j.optmat.2011.01.019
  6. A.P. Alivisatos, Science 271 (1997).
  7. L. Lipinska, L. Lojko, A. Klos, S. Ganschow, R. Diduszko, W. Ryba-Romanowski, A. Pajaczkowska, J. Alloys Compd. 432 (2007) 177. https://doi.org/10.1016/j.jallcom.2006.05.112
  8. A. Jusza, K. Anders, A. Jastrzebska, P. Polis, A. Olszyna, M. Kus, A. Kunicki, R. Piramidowicz, Opt. Mater. 33 (2011) 1487. https://doi.org/10.1016/j.optmat.2011.04.015
  9. G.H. Dieke, Spectra & Energy Levels of Rare Earth Ions in Crystals, Inter Science, New York, 1968.
  10. J.H.V. Vleck, J. Phys. Chem. 41 (1937) 67. https://doi.org/10.1021/j150379a006
  11. S.P. Khatkar, S.D. Han, V.B. Taxak, R. Kumar, D. Kumar, Bull. Electrochem. 22 (3) (2006) 97.
  12. I.M. Curelaru, K.G. Strid, Phys. Rev. B 23 (1981) 3700. https://doi.org/10.1103/PhysRevB.23.3700
  13. U.G. Nielsen, H.J. Jakobsen, J. Skibsted, J. Phys. Chem. B 105 (2001) 420. https://doi.org/10.1021/jp002882u
  14. I.M. Curelaru, E. Suonien, E. Minni, J. Lumin. 28 (1983) 123.
  15. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Opt. Mater. 32 (2010) 1618. https://doi.org/10.1016/j.optmat.2010.05.021
  16. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J. Am. Ceram. Soc. 92 (2009) 3092. https://doi.org/10.1111/j.1551-2916.2009.03324.x
  17. Q. Zhou, M. Shao, T. Chen, H. Xu, Mater. Res. Bull. 45 (2010) 1051. https://doi.org/10.1016/j.materresbull.2010.06.028
  18. M.V. Rotermal, T.I. Krasnenko, R.G. Zakharov, S.A. Petrova, Russ. J. Inorg. Chem. 49 (11) (2004) 1753.
  19. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, B.H. Choi, J. Am. Ceram. Soc. 92 (7) (2009) 1621. https://doi.org/10.1111/j.1551-2916.2009.03078.x
  20. R. Singh, S.J. Dhoble, Adv. Mat. Lett. 2 (5) (2011) 341.
  21. J. Gu, B. Yan, J. Alloys Compd. 476 (2009) 619. https://doi.org/10.1016/j.jallcom.2008.09.084
  22. Sheetal, V.B. Taxak, S.P. Khatkar, J. Fluoresc. 22 (2012) 891. https://doi.org/10.1007/s10895-011-1027-8
  23. A.A. Fotiev, B.V. Shulgin, A.S. Moskvin, F.F. Gavrilov, Crystalline Vanadium Phsphors, Nauka, Moscow, 1976.
  24. S. Ekambaram, K.C. Patil, J. Alloys Compd. 448 (1997) 7.
  25. X.Q. Zeng, G.Y. Hong, H.P. You, X.Y. Wu, Chin. J. Lumin. 22 (2001) 58.
  26. I.O. Mazali, O.L. Alves, J. Braz. Chem. Soc. 15 (4) (2004) 464.
  27. H. Ronde, G. Blasse, J. Inorg. Nucl. Chem. 40 (1978) 215. https://doi.org/10.1016/0022-1902(78)80113-4
  28. G. Blasse, The Luminescence of Closed-Shell Transition Metal Complexes. New Developments in Luminescence and Energy Transfer, Springer-Verlag, Berlin, 2006, pp. 1-41.
  29. Y. Wang, T. Endo, L. He, C. Wu, J. Cryst. Growth 268 (2004) 568. https://doi.org/10.1016/j.jcrysgro.2004.04.093
  30. N.S. Singh, R.S. Ningthoujam, S.D. Singh, B. Viswanadh, N. Manoj, R.K. Vatsa, J. Lumin. 130 (2010) 2452. https://doi.org/10.1016/j.jlumin.2010.08.011
  31. S. Shionoya, W.M. Yen, Phosphor Handbook, CRC Press, Boca Raton, 1999, p. 190.
  32. G. Ju, Y. Hu, H. Wu, Z. Yang, C. Fu, Z. Mu, F. Kang, Opt. Mater. 33 (2011) 1297. https://doi.org/10.1016/j.optmat.2011.03.002
  33. D. Hreniak, W. Strek, P. Deren, A. Bednarkiewicz, A. Lukowiak, J. Alloys Comp. 408-412 (2006) 828. https://doi.org/10.1016/j.jallcom.2005.01.086
  34. A.H. Kitai, Solid State Luminescence, Chapman & Hall, London, 1993, p. 38.
  35. Z.J. Zhang, J.L. Yuan, H.H. Chen, X.X. Yang, J.T. Zhao, G.B. Zhang, C.S. Shi, Solid State Sci. 11 (2009) 549. https://doi.org/10.1016/j.solidstatesciences.2008.07.008
  36. Y. Idota, Eur. Pat. 0 567 149 A1 (1993).
  37. K. Qiu, J. Li, J. Li, X. Lu, Y. Gong, J. Li, J. Mater. Sci. 45 (2010) 5456. https://doi.org/10.1007/s10853-010-4598-x
  38. J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, J. Sun, L. Li, J. Alloys Compd. 487 (2009) L5. https://doi.org/10.1016/j.jallcom.2009.07.153
  39. G.P. Thim, H.F. Brito, S.A. Silva, M.A.S. Oliveira, M.C.F.C. Felintoc, J. Solid State Chem. 171 (2003) 375. https://doi.org/10.1016/S0022-4596(02)00216-5
  40. C. Guo, H.K. Yang, J.H. Jeong, J. Lumin. 130 (2010) 1390. https://doi.org/10.1016/j.jlumin.2010.02.052

Cited by

  1. Luminescence and structural properties of Eu3+ doped BaY2ZnO5 for LED solid-state lighting application vol.24, pp.12, 2013, https://doi.org/10.1007/s10854-013-1459-9
  2. Hybrid lanthanide complexes based on a novel b-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization vol.4, pp.74, 2013, https://doi.org/10.1039/c4ra05577b
  3. Structural and luminescent properties of Eu3+-doped GdSrAl3O7 nanophosphor vol.49, pp.14, 2013, https://doi.org/10.1007/s10853-014-8176-5
  4. Spectral and surface investigations of Ca2V2O7:Eu3+ nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes vol.116, pp.4, 2013, https://doi.org/10.1007/s00339-014-8331-5
  5. Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency vol.23, pp.5, 2013, https://doi.org/10.5757/asct.2014.23.5.289
  6. Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method vol.27, pp.2, 2016, https://doi.org/10.1007/s10854-015-3856-8
  7. The influence of charge compensation defects on the spectroscopic properties of europium doped Ca9Y(PO4)7 vol.7, pp.64, 2013, https://doi.org/10.1039/c7ra06869g
  8. Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyr vol.8, pp.46, 2013, https://doi.org/10.1039/c8ra03347a
  9. Optical band gap and photoluminescence studies of Eu3+-doped zinc silicate derived from waste rice husks vol.182, pp.None, 2013, https://doi.org/10.1016/j.ijleo.2019.01.061
  10. Dissolution kinetics of calcium vanadates in sulfuric acid: a fundamental study for the vanadium extraction process vol.95, pp.6, 2013, https://doi.org/10.1002/jctb.6375
  11. Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn) vol.32, pp.16, 2021, https://doi.org/10.1007/s10854-021-06710-y
  12. A Study of Vanadate Group Substitution into Nanosized Hydroxyapatite Doped with Eu3+ Ions as a Potential Tissue Replacement Material vol.12, pp.1, 2013, https://doi.org/10.3390/nano12010077