DOI QR코드

DOI QR Code

Sum-frequency vibrational spectroscopic studies of Langmuir monolayers

Sung, Woongmo;Kim, Doseok;Shen, Y.R.

  • Published : 20130600

Abstract

Surface-sensitive sum-frequency vibrational spectroscopy (SFVS) has grown into a most viable analytical tool to investigate Langmuir monolayer systems. It has been successful in deducing information on many key properties of Langmuir films not obtainable by other techniques. This review gives a survey on the current status of SFVS studies of Langmuir monolayers with emphasis on the structures of both surfactant monolayers and interfacial water under various circumstances.

Keywords

References

  1. D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, Wiley-VCH, New York, 1999.
  2. G. Brezesinski, H. Mohwald, Adv. Colloid Interface Sci. 100-102 (2003) 563-584. https://doi.org/10.1016/S0001-8686(02)00071-4
  3. D. Vollhardt, Mater. Sci. Eng. C 22 (2002) 121-127. https://doi.org/10.1016/S0928-4931(02)00159-5
  4. T.F.J. Martin, Annu. Rev. Cell. Dev. Biol. 14 (1998) 231-264. https://doi.org/10.1146/annurev.cellbio.14.1.231
  5. A. Datta, J. Kmetko, C.J. Yu, A.G. Richter, K.S. Chung, J.M. Bai, P. Dutta, J. Phys. Chem. B 104 (2000) 5797-5802. https://doi.org/10.1021/jp0006375
  6. H.D. Sikes, D.K. Schwartz, Langmuir 13 (1997) 4704-4709. https://doi.org/10.1021/la970346w
  7. S. Kewalramani, H. Hlaing, B.M. Ocko, I. Kuzmenko, M. Fukuto, J. Phys. Chem. Lett. 1 (2010) 489-495. https://doi.org/10.1021/jz9002873
  8. B. Gzyl-Malcher, M. Filek, G. Brezesinski, Langmuir 27 (2011) 10886-10893. https://doi.org/10.1021/la201765u
  9. J.A. Sherwin, Langmuir Monolayers in Thin Film Technology, Nova Science Publishers, New York, 2011.
  10. M. Pomerantz, F.H. Dacol, A. Segmuller, Phys. Rev. Lett. 40 (1978) 246-249. https://doi.org/10.1103/PhysRevLett.40.246
  11. A.M. Tishin, Y.A. Koksharov, J. Bohr, G.B. Khomutov, Phys. Rev. B 55 (1997) 11064-11066. https://doi.org/10.1103/PhysRevB.55.11064
  12. S. Gayen, M.K. Sanyal, A. Sarma, M. Wolff, K. Zhernenkov, H. Zabel, Phys. Rev. B 82 (2010) 174429. https://doi.org/10.1103/PhysRevB.82.174429
  13. A. Nayak, K.A. Suresh, Phys. Rev. E 78 (2008) 021606. https://doi.org/10.1103/PhysRevE.78.021606
  14. G.K. Chudinova, L.A. Nagovitsyn, R.E. Karpov, V.V. Savranskii, Quantum Electron. 33 (9) (2003) 765-770. https://doi.org/10.1070/QE2003v033n09ABEH002498
  15. S. Paul, C. Pearson, A. Molloy, M.A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M.C. Petty, Nano. Lett. 3 (2003) 533-536. https://doi.org/10.1021/nl034008t
  16. D.Y. Takamoto, E. Aydil, J.A. Zasadzinski, A.T. Ivanova, D.K. Schwartz, T. Yang, P.S. Cremer, Science 293 (2001) 1292-1295. https://doi.org/10.1126/science.1060018
  17. J.A. Zasadzinski, R. Viswanthan, L. Madsen, J. Garnaes, D.K. Schwartz, Science 263 (1994) 1726-1733. https://doi.org/10.1126/science.8134836
  18. V.M. Kaganer, M.A. Osipov, I.R. Peterson, J. Chem. Phys. 98 (1993) 3512-3527. https://doi.org/10.1063/1.464072
  19. V.M. Kaganer, H. Mohwald, P. Dutta, Rev. Mod. Phys. 79 (1999) 779-819.
  20. Y.F. Hifeda, G.W. Rayfield, Langmuir 8 (1992) 197-200. https://doi.org/10.1021/la00037a036
  21. D. Vollhardt, V. Melzer, J. Phys. Chem. B 101 (1997) 3370-3375. https://doi.org/10.1021/jp963057+
  22. S. Hénon, J. Meunier, Rev. Sci. Instrum. 62 (1991) 936-939. https://doi.org/10.1063/1.1142032
  23. M.W. Kim, D.S. Cannell, Phys. Rev. A 13 (1976) 411-416. https://doi.org/10.1103/PhysRevA.13.411
  24. Th. Rasing, H. Hsiung, Y.R. Shen, M.W. Kim, Phys. Rev. A 37 (1988) 2732-2735. https://doi.org/10.1103/PhysRevA.37.2732
  25. S. Seok, T.J. Kim, S.Y. Hwang, Y.D. Kim, D. Vaknin, D. Kim, Langmuir 25 (16) (2009) 9262-9269. https://doi.org/10.1021/la900096a
  26. X. Qiu, J. Ruiz-Garcia, K.J. Stine, C.M. Knobler, J.V. Selinger, Phys. Rev. Lett. 67 (1991) 703-706. https://doi.org/10.1103/PhysRevLett.67.703
  27. C.M. Knobler, Science 249 (1990) 870-874. https://doi.org/10.1126/science.249.4971.870
  28. M.B. Forstner, J. Kas, D. Martin, Langmuir 17 (2001) 567-570. https://doi.org/10.1021/la000795n
  29. W. .Bu, D. Vaknin, Langmuir 24 (2008) 441-447. https://doi.org/10.1021/la702107e
  30. S.W. Barton, B.N. Thomas, E.B. Flom, S.A. Rice, B. Lin, J.B. Peng, J.B. Ketterson, P. Dutta, J. Chem. Phys. 89 (1988) 2257-2270. https://doi.org/10.1063/1.455068
  31. G.A. Overbeck, D. Mobius, J. Phys. Chem. 97 (1993) 7999-8004. https://doi.org/10.1021/j100132a032
  32. S. Riviere-Cantin, S. Henon, J. Meunier, Phys. Rev. E 54 (1996) 1683-1686. https://doi.org/10.1103/PhysRevE.54.1683
  33. M.K. Durbin, A. Malik, R. Ghaskadvi, M.C. Shih, P. Zschack, P. Dutta, J. Phys. Chem. 98 (1994) 1753-1755. https://doi.org/10.1021/j100058a005
  34. M.C. Shih, T.M. Bohanon, J.M. Mikrut, P. Zschack, P. Dutta, Phys. Rev. A 45 (1992) 5734-5737. https://doi.org/10.1103/PhysRevA.45.5734
  35. S. Riviere, S. Henon, J. Meunier, G. . Albrecht, M.M. Boissonnade, A. Baszkin, Phys. Rev. Lett. 75 (1995) 2506-2509. https://doi.org/10.1103/PhysRevLett.75.2506
  36. J. Kmetko, A. Datta, G. Evmenenko, P. Dutta, J. Phys. Chem. B 105 (2001) 10818-10825. https://doi.org/10.1021/jp0122169
  37. Hans-Jurgen Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH (Verlag GmbH & Co. KGaA), 2006.
  38. R.R. Netz, Phys. Rev. E 60 (1999) 3174-3182.
  39. D. Andelman, Handbook Biol. Phys. 1B (1995) 603-641.
  40. W. Bu, D. Vaknin, A. Travesset, Langmuir 22 (2006) 5673-5681. https://doi.org/10.1021/la053400e
  41. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79 (1997) 435-438. https://doi.org/10.1103/PhysRevLett.79.435
  42. C.C. Fleck, R.R. Netz, Phys. Rev. Lett. 95 (2005) 128101. https://doi.org/10.1103/PhysRevLett.95.128101
  43. D. Vaknin, P. Kruger, M. Losche, Phys. Rev. Lett. 90 (2003) 178102. https://doi.org/10.1103/PhysRevLett.90.178102
  44. T. Buffeteau, B. Desbat, D. Eyquem, Vibrational Spectrosc. 11 (1996) 29-36. https://doi.org/10.1016/0924-2031(95)00054-2
  45. J.H. Hunt, P. Guyot-Sionnest, Y.R. Shen, Chem. Phys. Lett. 133 (1987) 189-192. https://doi.org/10.1016/0009-2614(87)87049-5
  46. Th. Rasing, Y.R. Shen, M.W. Kim, P. Valint Jr., J. Bock, Phys. Rev. A 31 (1985) 537-539. https://doi.org/10.1103/PhysRevA.31.537
  47. Y.R. Shen, The Principles of Nonlinear Optics, Wiley & Sons, Hoboken, NJ, 2003.
  48. Robert R. Boyd, Nonlinear Optics, second ed., Academic Press, San Diego, 2003.
  49. D.E. Gragson, G.L. Richmond, J. Am. Chem. Soc. 120 (1998) 366-375. https://doi.org/10.1021/ja972570d
  50. G.L. Richmond, Chem. Rev. 102 (2002) 2693-2724. https://doi.org/10.1021/cr0006876
  51. P.B. Miranda, Y.R. Shen, J. Phys. Chem. B 103 (1999) 3292-3307. https://doi.org/10.1021/jp9843757
  52. M.S. Yeganeh, S.M. Dougal, R.S. Polizzotti, P. Rabinowitz, Phys. Rev. Lett. 74 (1995) 1811-1814. https://doi.org/10.1103/PhysRevLett.74.1811
  53. D.E. Gragson, B.M. McCarty, G.L. Richmond, J. Am. Chem. Soc. 119 (1997) 6144-6152. https://doi.org/10.1021/ja962277y
  54. J. Sung, Y. Jeon, D. Kim, T. Iwahashi, K. Seki, T. Iimori, Y. Ouchi, Colloids Surf. A 284-285 (2006) 84-88. https://doi.org/10.1016/j.colsurfa.2005.11.045
  55. J. Sung, K. Park, D. Kim, J. Korean Phys. Soc. 44 (2004) 1394-1398.
  56. J. Sung, K. Park, D. Kim, J. Phys. Chem. B 109 (2005) 18507-18514. https://doi.org/10.1021/jp051959h
  57. J. Sung, Doseok Kim, J. Phys. Chem. C 111 (2007) 1783-1787. https://doi.org/10.1021/jp0664263
  58. J. Liu, J.C. Conboy, Bio. Phys. J. 89 (2005) 2522-2532.
  59. S.C. Hong, M. Oh-e, X. Zhuang, Y.R. Shen, J.J. Ge, F.W. Harris, S.Z.D. Cheng, Phys. Rev. E 63 (2001) 051706. https://doi.org/10.1103/PhysRevE.63.051706
  60. D. Kim, M. Oh-e, Y.R. Shen, Macromolecules 34 (2001) 9125-9129. https://doi.org/10.1021/ma0100908
  61. D. Kim, Y.R. Shen, Appl. Phys. Lett. 74 (1999) 3314-3316. https://doi.org/10.1063/1.123329
  62. Th. Rasing, Y.R. Shen, M.W. Kim, S. Grubb, Phys. Rev. Lett. 55 (1985) 2903-2906. https://doi.org/10.1103/PhysRevLett.55.2903
  63. W. Sung, S. Seok, D. Kim, C.S. Tian, Y.R. Shen, Langmuir 26 (23) (2010) 18266-18272. https://doi.org/10.1021/la103129z
  64. P.B. Miranda, Q. Du, Y.R. Shen, Chem. Phys. Lett. 286 (1998) 1-8. https://doi.org/10.1016/S0009-2614(97)01476-0
  65. J.A. Mondal, S. Nihonyanagi, S. Yamaguchi, T. Tahara, J. Am. Chem. Soc. 132 (2010) 10656-10657. https://doi.org/10.1021/ja104327t
  66. A. Morita, J.T. Hynes, Chem. Phys. 258 (2000) 371-390. https://doi.org/10.1016/S0301-0104(00)00127-0
  67. Z. Chen, Y.R. Shen, G.A. Somorjai, Annu. Rev. Phys. Chem. 53 (2002) 437-465. https://doi.org/10.1146/annurev.physchem.53.091801.115126
  68. Y.R. Shen, V. Ostroverkhov, Chem. Rev. 106 (2006) 1140-1154. https://doi.org/10.1021/cr040377d
  69. P. Guyot-Sionnest, J.H. Hunt, Y.R. Shen, Phys. Rev. Lett. 59 (1987) 1597-1600. https://doi.org/10.1103/PhysRevLett.59.1597
  70. X. Wei, P.B. Miranda, C. Zhang, Y.R. Shen, Phys. Rev. B 66 (2002) 085402. https://doi.org/10.1103/PhysRevB.66.085402
  71. X. Zhuang, P.B.Miranda, D. Kim, Y.R. Shen, Phys. Rev. B 59 (1999) 12632-12640. https://doi.org/10.1103/PhysRevB.59.12632
  72. Y. Jeon, J. Sung, W. Bu, D. Vaknin, Y. Ouchi, D. Kim, J. Phys. Chem. C 112 (2008) 19649-19654. https://doi.org/10.1021/jp807873j
  73. L.J. Richter, T.P.Petralli-Mallow, J.C. Stephenson,Opt. Lett.23(1998)1954-1956.
  74. J.A. McGuire, Y.R. Shen, Science 313 (2006) 1945-1948. https://doi.org/10.1126/science.1131536
  75. M. Smits, A. Ghosh, M. Sterrer, M. Muller, M. Bonn, Phys. Rev. Lett. 98 (2007) 098302. https://doi.org/10.1103/PhysRevLett.98.098302
  76. S. Nihonyanagi, S. Yamaguchi, T. Tahara, J. Chem. Phys. 130 (2009) 204704. https://doi.org/10.1063/1.3135147
  77. I.V. Stiopkin, H.D. Jayathilake, A.N. Bordenyuk, A.V. Benderskii, J. Am. Chem. Soc. 130 (2008) 2271-2275. https://doi.org/10.1021/ja076708w
  78. C.S. Tian, N. Ji, G.A. Waychunas, Y.R. Shen, J. Am. Chem. Soc. 130 (2008) 13033-13039. https://doi.org/10.1021/ja8021297
  79. S. Roke, J. Schins, M. Muller, M. Bonn, Phys. Rev. Lett. 90 (2003) 128101. https://doi.org/10.1103/PhysRevLett.90.128101
  80. D.K.Hore, D.K.Beaman, G.L. Richmond, J.Am. Chem. Soc.127(2005) 9356-9357. https://doi.org/10.1021/ja051492o
  81. M. Smits, M. Sovago, G.W.H. Wurpel, D. Kim, M. Muller, M. Bonn, J. Phys. Chem. C 111 (2007) 8878-8883. https://doi.org/10.1021/jp067453w
  82. D. Zhang, J. Gutow, K.B. Eisenthal, J. Phys. Chem. 98 (1994) 13729-13734. https://doi.org/10.1021/j100102a045
  83. M.R. Watry, T.L. Tarbuck, G.L. Richmond, J. Phys. Chem. B 107 (2003) 512-518.
  84. G. Ma, H.C. Allen, Langmuir 22 (2006) 5341-5349. https://doi.org/10.1021/la0535227
  85. G. Ma, H.C. Allen, Photochem. Photobiol. 82 (2006) 1517-1529. https://doi.org/10.1111/j.1751-1097.2006.tb09807.x
  86. G. Ma, H.C. Allen, Langmuir 23 (2007) 589-597. https://doi.org/10.1021/la061870i
  87. K.L. Harper, H.C. Allen, Langmuir 23 (2007) 8925-8931. https://doi.org/10.1021/la7006974
  88. G. Ma, H.C. Allen, Langmuir 22 (2006) 11267-11274. https://doi.org/10.1021/la061476k
  89. C. Ohe, T. Sasaki, M. Noi, Y. Goto, K. Itoh, Anal. Bioanal. Chem. 388 (2007) 73-79. https://doi.org/10.1007/s00216-006-1030-0
  90. M. Bonn, S. Roke, O. Berg, L.B.F. Juurlink, A. Stamouli, M. Mu1ller, J. Phys. Chem. B 108 (2004) 19083-19085. https://doi.org/10.1021/jp0452249
  91. I.I. Rzeznicka, M. Sovago, E.H.G. Backus, M. Bonn, T. Yamada, T. Kobayashi, M. Kawai, Langmuir 26 (20) (2010) 16055-16062. https://doi.org/10.1021/la1028965
  92. D. Vaknin, W. Bu, J. Phys. Chem. Lett. 1 (2010) 1936-1940. https://doi.org/10.1021/jz1005434
  93. M. Sovago, G.W.H. Wurpel, M. Smits, M. Muller, M. Bonn, J. Am. Chem. Soc. 129 (2007) 11079-11084. https://doi.org/10.1021/ja071189i
  94. C.Y. Tang, H.C. Allen, J. Phys. Chem. A 113 (2009) 7383-7393. https://doi.org/10.1021/jp9000434
  95. P. Viswanath, A. Aroti, H. Motschmann, E. Leontidis, J. Phys. Chem. B 113 (2009) 14816-14823. https://doi.org/10.1021/jp906455k
  96. M.C. Gurau, E.T. Castellana, F. Albertorio, S. Kataoka, S. Lim, R.D. Yang, P.S. Cremer, J. Am. Chem. Soc. 125 (2003) 11166-11167. https://doi.org/10.1021/ja036735w
  97. K.L. Rowlen, J.M. Harris, Anal. Chem. 63 (1991) 964-969. https://doi.org/10.1021/ac00010a006
  98. J.R. Scherer, M.K. Go, S. Kint, J. Phys. Chem. 77 (1973) 2108-2117. https://doi.org/10.1021/j100636a016
  99. M. Falk, Can. J. Chem. 58 (1980) 1495-1501. https://doi.org/10.1139/v80-237
  100. J.R. Scherer, M.K. Go, S. Kint, J. Phys. Chem. 78 (1974) 1304-1313. https://doi.org/10.1021/j100606a013
  101. Y. Jeon, J. Sung, D. Kim, C. Seo, H. Cheong, Y. Ouchi, R. Ozawa, H. Hamaguchi, J. Phys. Chem. B 112 (2008) 923-928. https://doi.org/10.1021/jp0746650
  102. Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Phys. Rev. Lett. 70 (1993) 2313-2316. https://doi.org/10.1103/PhysRevLett.70.2313
  103. G.E. Walrafen, J. Chem. Phys. 47 (1967) 114-126. https://doi.org/10.1063/1.1711834
  104. Q. Du, E. Freysz, Y.R. Shen, Science 264 (5160) (1994) 826-828. https://doi.org/10.1126/science.264.5160.826
  105. M.G. Brown, E.A. Raymond, H.C. Allen, L.F. Scatena, G.L. Richmond, J. Phys. Chem. A 104 (2000) 10220-10226. https://doi.org/10.1021/jp0010942
  106. V. Ostroverkhov, G.A. Waychunas, Y.R. Shen, Chem. Phys. Lett. 386 (2004) 144-148. https://doi.org/10.1016/j.cplett.2004.01.047
  107. V. Ostroverkhov, G.A. Waychunas, Y.R. Shen, Phys. Rev. Lett. 94 (2005) 046102. https://doi.org/10.1103/PhysRevLett.94.046102
  108. J. Sung, L. Zhang, C.S. Tian, Y.R. Shen, G.A. Waychunas, J. Phys. Chem. C 115 (2011) 13887-13893. https://doi.org/10.1021/jp2046596
  109. X. Xiao, V. Vogel, Y.R. Shen, Chem. Phys. Lett. 163 (1989) 555-559. https://doi.org/10.1016/0009-2614(89)85186-3
  110. X. Zhao, S. Subrahmanyan, K.B. Eisenthal, Chem. Phys. Lett. 171 (1990) 558-562. https://doi.org/10.1016/0009-2614(90)85263-C
  111. S. Ong, X. Zhao, K.B. Eisenthal, Chem. Phys. Lett. 191 (1992) 327-335. https://doi.org/10.1016/0009-2614(92)85309-X
  112. K.B. Eisenthal, Chem. Rev. 96 (1996) 1343-1360. https://doi.org/10.1021/cr9502211
  113. S. Nihonyanagi, S. Yamaguchi, T. Tahara, J. Am. Chem. Soc. 132 (2010) 6867-6869. https://doi.org/10.1021/ja910914g
  114. R.E. Pool, J. Versluis, E.H.G. Backus, M. Bonn, J. Phys. Chem. B 115 (2011) 15362-15369. https://doi.org/10.1021/jp2079023
  115. J.A. Mondal, S. Nihonyanagi, S. Yamaguchi, T. Tahara, J. Am. Chem. Soc. 134 (2012) 7842-7850. https://doi.org/10.1021/ja300658h
  116. G.W.H. Wurpel, M. Sovago, M. Bonn, J. Am. Chem. Soc. 129 (2007) 8420-8421. https://doi.org/10.1021/ja072552o
  117. R.K. Campen, T.T.M. Ngo, M. Sovago, J. Ruysschaert, M. Bonn, J. Am. Chem. Soc. 132 (2010) 8037-8047. https://doi.org/10.1021/ja100838q
  118. C.Y. Tang, Z. Huang, H.C. Allen, J. Phys. Chem. B 114 (2010) 17068-17076. https://doi.org/10.1021/jp105472e
  119. M. Sovago, E. Vartiainen, M. Bonn, J. Chem. Phys. 131 (2009) 161107. https://doi.org/10.1063/1.3257600
  120. X. Chen, W. Hua, Z. Huang, H.C. . Allen, J. Am. Chem. Soc. 132 (2010) 11336-11342. https://doi.org/10.1021/ja1048237
  121. W. Pohle, C. Selle, H. Fritzsche, M. Bohlb, J. Mol. Struct. 408-409 (1997) 273-277. https://doi.org/10.1016/S0022-2860(96)09509-9

Cited by

  1. Lipid Fluid–Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy vol.117, pp.33, 2013, https://doi.org/10.1021/jp4047215
  2. Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy vol.57, pp.12, 2014, https://doi.org/10.1007/s11426-014-5233-5
  3. Two-Dimensional Correlation Analysis of Sum-Frequency Vibrational Spectra of Langmuir Monolayers vol.18, pp.5, 2013, https://doi.org/10.3807/josk.2014.18.5.558
  4. Interaction between Potassium Phosphate Buffer Solution and Modeling Cell Membrane Investigated by Sum Frequency Generation Vibrational Spectroscopy vol.28, pp.4, 2013, https://doi.org/10.1063/1674-0068/28/cjcp1504070
  5. Intermolecular Interactions at the Interface Quantified by Surface-Sensitive Second-Order Fermi Resonant Signals vol.119, pp.29, 2015, https://doi.org/10.1021/acs.jpcc.5b03204
  6. Modeling and visualization of carrier motion in organic films by optical second harmonic generation and Maxwell-displacement current vol.48, pp.37, 2013, https://doi.org/10.1088/0022-3727/48/37/373001
  7. Macromolecular Structure of Dodecyltrimethylammonium Chloride at the Silica/Water Interface Studied by Sum Frequency Generation Spectroscopy vol.119, pp.42, 2013, https://doi.org/10.1021/acs.jpcc.5b06058
  8. Fermi Resonant Interaction of the Tailed Methyl Groups of Langmuir Monolayer at the Air/Water Interface during Phase Transition vol.119, pp.45, 2015, https://doi.org/10.1021/acs.jpcc.5b07347
  9. Observing Peptide-Induced Lipid Accumulation in a Single-Component Zwitterionic Lipid Bilayer vol.119, pp.51, 2013, https://doi.org/10.1021/acs.jpcc.5b10632
  10. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface vol.145, pp.24, 2016, https://doi.org/10.1063/1.4972564
  11. Effect of Under-Monolayer Adsorption on Foamability, Rheological Characteristics, and Dynamic Behavior of Fluid Interfaces: Experimental Evidence for the Guggenheim Extended Interface Model vol.121, pp.21, 2017, https://doi.org/10.1021/acs.jpcc.7b02483
  12. Interaction of Sodium Dodecyl Sulfate with Lipid Monolayer Studied by Sum-Frequency Generation Spectroscopy at Air–Water Interface vol.121, pp.24, 2013, https://doi.org/10.1021/acs.jpcc.7b02294
  13. Salt Promotes Protonation of Amine Groups at Air/Water Interface vol.8, pp.15, 2013, https://doi.org/10.1021/acs.jpclett.7b01198
  14. Order and melting stability of calcium arachidate Langmuir-Blodgett monolayers prepared at different pH vol.642, pp.None, 2013, https://doi.org/10.1016/j.tsf.2017.08.037
  15. In situ analytical techniques for battery interface analysis vol.47, pp.3, 2013, https://doi.org/10.1039/c7cs00180k
  16. Interaction of Arachidic Acid Langmuir Monolayers with Trivalent Ions La3+ and Fe3+ Studied by Vibrational Sum-Frequency Spectroscopy vol.59, pp.7, 2013, https://doi.org/10.2320/matertrans.md201708
  17. Interaction of l-Phenylalanine with Lipid Monolayers at Air–Water Interface at Different pHs: Sum-Frequency Generation Spectroscopy and Surface Pressure Studies vol.122, pp.7, 2013, https://doi.org/10.1021/acs.jpcc.7b11049
  18. Lipids at the air-water interface vol.4, pp.1, 2013, https://doi.org/10.1007/s40828-018-0058-z
  19. Influence of riboflavin on the oxidation kinetics of unsaturated fatty acids at the air/aqueous interface revealed by sum frequency generation vibrational spectroscopy vol.20, pp.25, 2018, https://doi.org/10.1039/c8cp00975a
  20. Water molecules on the liquid superlubricity interfaces achieved by phosphoric acid solution vol.4, pp.3, 2013, https://doi.org/10.1049/bsbt.2018.0021
  21. Gold as a standard phase reference in complex sum frequency generation measurements vol.150, pp.12, 2013, https://doi.org/10.1063/1.5081147
  22. Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air–water interface vol.116, pp.30, 2013, https://doi.org/10.1073/pnas.1818600116
  23. Vibrational Energy Redistribution between CH Stretching Modes in Alkyl Chain Monolayers Revealed by Time-Resolved Two-Color Pump-Probe Sum Frequency Spectroscopy vol.11, pp.None, 2013, https://doi.org/10.1021/acs.jpclett.9b03386
  24. Vibrational Sum Frequency Scattering in Absorptive Media: A Theoretical Case Study of Nano-objects in Water vol.124, pp.42, 2020, https://doi.org/10.1021/acs.jpcc.0c05196
  25. Structure of Electric Double Layer under Cationic Langmuir Monolayer: Charge Condensation Effect vol.12, pp.None, 2013, https://doi.org/10.1021/acs.jpclett.1c00401