DOI QR코드

DOI QR Code

Enhanced photocatalytic performance of novel self-assembled floral ${\beta}-Ga_2O_3$ nanorods

Girija, K.;Thirumalairajan, S.;Patra, Astam K.;Mangalaraj, D.;Ponpandian, N.;Viswanathan, C.

  • Published : 20130600

Abstract

Self-assembled monoclinic phase of novel floral ${\beta}-Ga_2O_3$ nanorods were prepared using reflux condensation method by controlled precipitation of metal cations with urea. The structural and morphological properties were investigated by X-ray powder diffraction, Raman spectroscopy and Scanning electron microscope. Single-crystalline nanorods with size 100 nm involved in the selfassembly process to form flowery pattern have diameter ${\sim}1{\mu}m$ with surface area $40.8m^2/g$ confirmed from transmission electron microscope and Brunauer-Emmett-Teller analysis. The band gap energy of 4.59 eV was evaluated from the UV-vis diffuse reflectance spectrum and the photoluminescence spectrum displayed the characteristic luminescence and blue-light emission peaks. Further, the photocatalytic activity of novel ${\beta}-Ga_2O_3$ floral nanorods towards the photodegradation of Rhodamine B in aqueous solution under ultra violet light irradiation showed better photocatalytic activity than the commercial photocatalyst Degussa P25 $TiO_2$.

Keywords

References

  1. Jun Zhang, Feihong Jiang, Lide Zhang, Fabrication, structural characterization and optical properties of semiconducting gallium oxide nanobelts, Phys. Lett. A 322 (2004) 363-368. https://doi.org/10.1016/j.physleta.2004.01.043
  2. Xu Xiang, Chuan-Bao Cao, He-Sun Zhu, Synthesis and photoluminescence of gallium oxide ultra-long nanowires and thin nanosheets, J. Cryst. Growth 279 (2005)122-128. https://doi.org/10.1016/j.jcrysgro.2005.02.022
  3. P. Suresh Kumar, J. Sundaramurthy, D. Mangalaraj, D. Nataraj, D. Rajarathnam, M.P. Srinivasan, Enhanced super-hydrophobic and switching behavior of ZnO nanostructured, surfaces prepared by simple solution - immersion successive ionic layer adsorption and, reaction process, J. Colloid Interface Sci. 363 (2011) 51-58.
  4. Nam Ho Kim, Hyoun Woo Kim, Gallium oxide nanomaterials produced on $SiO_2$ substrates via thermal evaporation, Appl. Surf. Sci. 242 (2005) 29-34. https://doi.org/10.1016/j.apsusc.2004.07.062
  5. Jing (Jeanne) Yang, Yanyan Zhao, Ray L. Frost, Infrared and infrared emission spectroscopy of gallium oxide ${\alpha}$-GaO(OH) nanostructures, Spectrochim. Acta A 74 (2009) 398-403. https://doi.org/10.1016/j.saa.2009.06.032
  6. Jungang Zhang, Changtai Xia, Qun Deng, Wusheng Xu, et al., Growth and characterization of new transparent conductive oxides single crystals ${\beta}-Ga_2O_3$: Sn, J. Phys. Chem. Solids 67 (2006) 1656-1659. https://doi.org/10.1016/j.jpcs.2006.02.018
  7. Hyoun Woo Kim, Nam Ho Kim, Influence of postdeposition annealing on the properties of $Ga_2O_3$ films on $SiO_2$ substrates, J. Alloy.Compd. 389 (2005) 177-181. https://doi.org/10.1016/j.jallcom.2004.05.082
  8. Godhuli Sinha, Kalyan Adhikary, Subhadra Chaudhuri, Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties, Opt. Mater. 29 (2007) 718-722. https://doi.org/10.1016/j.optmat.2005.12.002
  9. Zhenguo Ji, Juan Du, Jia Fan, Wei Wang, Gallium oxide films for filter and solar-blind UV detector, Opt. Mater. 28 (2006) 415-417. https://doi.org/10.1016/j.optmat.2005.03.006
  10. Jie Zhang, Zhiguo Liu, Cuikun Lin, Jun Lin, A simple method to synthesize ${\beta}-Ga_2O_3$ nanorods and their photoluminescence properties, J. Cryst. Growth 280 (2005) 99-106. https://doi.org/10.1016/j.jcrysgro.2005.02.060
  11. Yanyan Zhao, Ray L. Frost, Wayde N. Martens, Synthesis and characterization of gallium oxide nanostructures via a soft-chemistry route, J. Phys. Chem. C 111 (2007) 16290-16299. https://doi.org/10.1021/jp075575y
  12. Yanyan Zhao, Ray L. Frost, Jing Yang, Wayde N. Martens, Size and morphology control of gallium oxide hydroxide GaO(OH), nano-to micro-sized particles by soft- chemistry route without surfactant, J. Phys. Chem. C 112 (2008) 3568-3579. https://doi.org/10.1021/jp710545p
  13. G. Guzman-Navarro, M. Herrera-Zaldivar, J. Valenzuela-Benavides, D. Maestre, CL study of blue and UV emissions in ${\beta}-Ga_2O_3$ nanowires grown by thermal evaporation of GaN, J. Appl. Phys. 110 (2011) 034315-034315-5. https://doi.org/10.1063/1.3620986
  14. Chitta Ranjan Patra, Yitzhak Mastai, Aharon Gedanken, Microwave-assisted synthesis of submicrometer GaO(OH) and $Ga_2O_3$ rods, J. Nanopart. Res. 6 (2004) 509-518. https://doi.org/10.1007/s11051-004-2715-y
  15. V. Srihari, V. Sridharan, H.K. Sahu, G. Raghavan, V.S. Sastry, C.S. Sundar, Combustion synthesis of $Ga_2O_3$ nanoparticles, J. Mater. Sci. 44 (2009) 671-675. https://doi.org/10.1007/s10853-008-3013-3
  16. Manickavachagam Muruganandham, Ramakrishnan Amutha, Mahmoud S.M. Abdel Wahed, Bashir Ahmmad, et al., Controlled fabrication of a-GaOOH and ${\alpha}-Ga_2O_3$ self-assembly and its superior photocatalytic activity, J. Phys. Chem. C 116 (2012) 44-53. https://doi.org/10.1021/jp205348p
  17. A.C. Tas, P.J. Majewski, F. Aldinger, Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior, J. Am. Ceram. Soc. 85 (2002) 1421-1429. https://doi.org/10.1111/j.1151-2916.2002.tb00291.x
  18. Hai-Sheng Qian, Poernomo Gunawan, Yun-Xia Zhang, Guo-Feng Lin, Jian-Wei Zheng, et al., Template-free synthesis of highly uniform a-GaOOH spindles and conversion to ${\alpha}-Ga_2O_3$ and ${\beta}-Ga_2O_3$, Cryst. Growth Des. 8 (2008) 1282-1287. https://doi.org/10.1021/cg701004w
  19. Y. Wang, J. Zhu, L. Zhang, X. Yang, X. Wang, et al., Preparation and characterization of perovskite $LaFeO_3$ nanocrystals, Mater. Lett. 60 (2006) 1767-1770. https://doi.org/10.1016/j.matlet.2005.12.015
  20. Inaki Lopez, Antonio D. Utrilla, Emilio Nogales, Bianchi Mendez, et al., Indoped Gallium oxide micro- and nano-structures: morphology, structure, and luminescence properties, J. Phys. Chem. C 116 (2012) 3935-3943. https://doi.org/10.1021/jp210233p
  21. Yong Cai Zhang, Xiao Wu, Xiao Ya Hu, Qiao Fang Shi, A green hydrothermal route to GaOOH nanorods, Mater. Lett. 61 (2007) 1497-1499. https://doi.org/10.1016/j.matlet.2006.07.060
  22. Chih-Chia Huang, Chen-Sheng Yeh, GaOOH, and ${\beta}$- and ${\gamma}-Ga_2O_3$ nanowires: preparation and photoluminescence, New J. Chem. 34 (2010) 103-107. https://doi.org/10.1039/b9nj00392d
  23. Guocong Liu, Xuechen Duan, Haibin Li, Dawen Liang, Preparation and photoluminescence properties of Eu-doped $Ga_2O_3$ nanorods, Mater. Chem. Phys. 110 (2008) 206-211. https://doi.org/10.1016/j.matchemphys.2008.02.012
  24. Suoyuan Lian, Enbo Wang, Zhenhui Kang, Yunpeng Bai, et al., Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 129 (2004) 485-490. https://doi.org/10.1016/j.ssc.2003.11.043
  25. Heather J. Gulley-Stahl, Whitney L. Schmidt, Heather A. Bullen, Characterization and reactivity of chromia nanoparticles prepared by urea forced hydrolysis, J. Mater. Sci. 43 (2008) 7066-7072. https://doi.org/10.1007/s10853-008-3056-5
  26. Y.J. Gao, W.C. Zhang, X.L. Wu, Y. Xia, et al., Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics, Appl. Surf. Sci. 255 (2008) 1982-1987. https://doi.org/10.1016/j.apsusc.2008.06.137
  27. Yidong Hou, Jinshui Zhang, Zhengxin Ding, Ling Wu, Synthesis, characterization and photocatalytic activity of ${\beta}-Ga_2O_3$ nanostructures, Powder Tech. 203 (2010) 440-446. https://doi.org/10.1016/j.powtec.2010.06.004
  28. Juan Xu, Kwonho Jang, Il Gu Jung, Hae Jin Kim, et al., Cutting gallium oxide nanoribbons into ultrathin nanoplates, Chem. Mater. 21 (2009) 4347-4349. https://doi.org/10.1021/cm9009157
  29. Jungang Zhang, Bin Li, Changtai Xia, Guangqing Pei, Qun Deng, et al., Growth and spectral characterization of ${\beta}-Ga_2O_3$ single crystals, J. Phys. Chem. Solids 67 (2006) 2448-2451. https://doi.org/10.1016/j.jpcs.2006.06.025
  30. Qingjun Xu, Shiying Zhang, Fabrication and photoluminescence of ${\beta}-Ga_2O_3 $ nanorods, Superlattice Microst. 44 (2008) 715-720. https://doi.org/10.1016/j.spmi.2008.09.005
  31. C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, Catalytic synthesis and PL of beta-$Ga_2O_3$ nanowires, Appl. Phys. Lett. 78 (2001) 3202-3204. https://doi.org/10.1063/1.1374498
  32. Pongsaton Amornpitoksuk, Sumetha Suwanboon, Suthinee Sangkanu, Ampaitip Sukhoom, Nantakan Muensit, Morphology, photocatalytic and antibacterial activities of radial spherical ZnO nanorods controlled with a diblock copolymer, Superlattice Microst. 51 (2012) 103-113. https://doi.org/10.1016/j.spmi.2011.11.002
  33. Weirong Zhao, Yong Yang, Rui Hao, Feifei Liu, et al., Synthesis of mesoporous ${\beta}-Ga_2O_3$ nanorods using PEG as template: preparation, characterization and photocatalytic properties, J. Hazard. Mater. 192 (2011) 1548-1554. https://doi.org/10.1016/j.jhazmat.2011.06.073
  34. Zhimin Liu, Jianling Zhang, Buxing Han, Jimin Du, et al., Solvothermal synthesis of mesoporous $Eu_2O_3-TiO_2$ composites, Microporous Mesoporous Mater. 81 (2005) 169-174. https://doi.org/10.1016/j.micromeso.2005.01.028
  35. Jiaguo Yu, Lifang Qi, Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light driven photocatalytic activity, J. Hazard. Mater. 169 (2009) 221-227. https://doi.org/10.1016/j.jhazmat.2009.03.082
  36. S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, et al., Controlled synthesis of, perovskite $LaFeO_3$ microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity, Chem. Eng. J. 209 (2012) 420-428. https://doi.org/10.1016/j.cej.2012.08.012
  37. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, et al., Photocatalytic activity for water decomposition of $RuO_2$-dispersed $Zn_2GeO_4$ with $d^{10}$ configuration, J. Phys. Chem. B 108 (2004) 4369-4375. https://doi.org/10.1021/jp0373189
  38. J.M. Wu, T.W. Zhang, Photodegradation of Rhodamine B in water assisted titania films prepared through a novel procedure, J. Photochem. Photobiol. A: Chem. 162 (2004) 171-177. https://doi.org/10.1016/S1010-6030(03)00345-9
  39. Li-China Tien, Wei-Tong Chen, Ching-Hwa Ho, Enhanced photocatalytic activity in ${\beta}-Ga_2O_3 $ nanobelts, J. Am. Ceram. Soc. 94 (2011) 3117-3122. https://doi.org/10.1111/j.1551-2916.2011.04479.x

Cited by

  1. Self-assembled synthesis and surface photovoltage properties of polyhedron-constructed micrometer solid sphere and hollow-sphere In2S3 vol.4, pp.33, 2013, https://doi.org/10.1039/c3ra42021c
  2. Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO3 microspheres made up of nanospheres vol.4, pp.49, 2013, https://doi.org/10.1039/c4ra03467h
  3. Tunable photoluminescent properties of Eu-doped β-Ga2O3phosphor thin films prepared via excimer laser-assisted metal organic decomposition vol.53, pp.5, 2014, https://doi.org/10.7567/jjap.53.05fb14
  4. Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals vol.38, pp.11, 2013, https://doi.org/10.1039/c4nj01029a
  5. In-Depth Understanding of the Relation between CuAlO2 Particle Size and Morphology for Ozone Gas Sensor Detection at a Nanoscale Level vol.6, pp.23, 2013, https://doi.org/10.1021/am507158z
  6. Photocatalytic degradation of organic pollutants by shape selective synthesis of b-Ga2O3 microspheres constituted by nanospheres for environmental remediation vol.3, pp.6, 2013, https://doi.org/10.1039/c4ta05295a
  7. Properties and Photocatalytic Activity ofβ-Ga2O3Nanorods under Simulated Solar Irradiation vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/191793
  8. Optical properties of β-Ga2O3nanorods synthesized by a simple and cost-effective method using egg white solution vol.54, pp.6, 2013, https://doi.org/10.7567/jjap.54.06fj13
  9. Synthesis and characterization of β-Ga2O3 nanowires on amorphous substrates using radio-frequency powder sputtering vol.412, pp.None, 2015, https://doi.org/10.1016/j.jcrysgro.2014.11.030
  10. Catalyst free vapor–solid deposition of morphologically different β-Ga2O3 nanostructure thin films for selective CO gas sensors at low temperature vol.8, pp.15, 2013, https://doi.org/10.1039/c6ay00391e
  11. Synthesis and characterization of Sn-doped β-Ga2O3 nano- and micrometer particles by chemical vapor deposition vol.27, pp.1, 2013, https://doi.org/10.1007/s10854-015-3837-y
  12. Synthesis of wide bandgap Ga2O3 (Eg ∼ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition vol.213, pp.4, 2016, https://doi.org/10.1002/pssa.201532711
  13. The effect of palm kernel meal supplementation in the diet on the growth performance and meat quality of swine, and on the level of odorous compounds and bacterial communities in swine manure vol.43, pp.5, 2013, https://doi.org/10.7744/kjoas.20160081
  14. Growth and characterization of β-Ga2O3 nanowires obtained on not-catalyzed and Au/Pt catalyzed substrates vol.457, pp.None, 2013, https://doi.org/10.1016/j.jcrysgro.2016.04.024
  15. Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry vol.27, pp.43, 2013, https://doi.org/10.1002/adfm.201702295
  16. Effect of Organic Substrates on the Photocatalytic Reduction of Cr(VI) by Porous Hollow Ga 2 O 3 Nanoparticles vol.8, pp.4, 2013, https://doi.org/10.3390/nano8040263
  17. Review—RF Sputtered Films of Ga2O3 vol.8, pp.7, 2013, https://doi.org/10.1149/2.0141907jss
  18. Enhanced Photocatalytic Degradation of 2-Butanone Using Hybrid Nanostructures of Gallium Oxide and Reduced Graphene Oxide Under Ultraviolet-C Irradiation vol.9, pp.5, 2013, https://doi.org/10.3390/catal9050449
  19. Comparison of Ga2O3 and TiO2 Nanostructures for Photocatalytic Degradation of Volatile Organic Compounds vol.10, pp.5, 2013, https://doi.org/10.3390/catal10050545
  20. Photocatalytic degradation of tetracycline hydrochloride over rugby-like β-Ga2O3 with a 3D hierarchically assembled porous structure for environmental remediation vol.10, pp.10, 2013, https://doi.org/10.1039/d0cy00562b
  21. CdS QD Decorated LaFeO 3 Nanosheets for Photocatalytic Application Under Visible Light Irradiation vol.5, pp.20, 2013, https://doi.org/10.1002/slct.202000220
  22. Tailoring photocatalysts and elucidating mechanisms of photocatalytic degradation of perfluorocarboxylic acids (PFCAs) in water: a comparative overview vol.95, pp.10, 2013, https://doi.org/10.1002/jctb.6333