Limestone Mapping in Gangwon Area, South Korea Using EO-1 Hyperion Hyperspectral Satellite Imagery

EO-1 Hyperion 초다분광 위성영상을 이용한 강원도 지역 석회암 탐지

  • Hyun, Chang-Uk (Department of Earth and Atmospheric Sciences, University of Alberta) ;
  • Park, Hyeong-Dong (Department of Energy Systems Engineering, Seoul National University)
  • Published : 2013.02.28

Abstract

This study presents approaches for limestone mapping in Gangwon area using EO-1 Hyperion hyperspectral satellite imagery. Limestone potential index formula was developed for fast and effective limestone detection, with utilization of intrinsic spectral absorption features within short-wave infrared wavelength region selected in reflectance spectra of carbonate minerals and spectra measured on samples collected in field. The limestone potential index was mapped on water, vegetation and snow land-covers removed area, and limestone open-pit mining sites, exposed slopes around road, vegetation removed construction sites, and few bare ground areas showed high index values. To apply partial unmixing matched filtering method for sub-pixel abundance mapping, spectrally pure end-member was extracted from the imagery. The partial unmixing result showed similar limestone distribution to the limestone potential index mapping result but slightly improved, with verification using high-spatial-resolution aerial photographs.

본 연구에서는 EO-1 Hyperion 초다분광 위성영상을 사용하여 강원도 지역을 대상으로 석회암 탐지를 수행하였다. 지표 석회암 탐지를 위하여 탄산염 광물 분광반사도의 단파장적외선 영역에서 나타나는 고유한 흡광특성을 이용하여 신속하고 효과적으로 석회암 분포를 강조할 수 있는 석회암 잠재지수를 개발하였다. 영상의 전처리 단계에서 수계, 식생 및 눈 피복이 제거된 영역에 한정하여 석회암 잠재지수 지도를 작성한 결과 석회암 노천채광 현장, 도로변 암반노출 사면, 식생이 제거된 건설현장 및 일부 나대지에서 높은 잠재지수가 나타났다. 분광학적으로 순수한 석회암 반사도를 영상에서 추출하고 탐지 대상의 화소 내 분포비율을 산정할 수 있는 부분 분광혼합 분석기법인 정합 필터링의 기준자료로 사용하였다. 부분 분광혼합 분석결과에서 석회암 잠재지수 분석결과와 유사한 지점에서 석회암의 분포가 강조되었지만 고해상도 항공사진과의 비교분석을 통하여 석회암 잠재지수보다 정밀한 탐지가 수행되었음을 확인하였다.

Keywords

References

  1. Beck, R., 2003, EO-1 User Guide, Version 2.3., University of Cincinnati, 74 p.
  2. Bedini, E., 2009, "Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data," Remote Sensing of Environment, Vol. 113, No. 6, pp. 1208-1219. https://doi.org/10.1016/j.rse.2009.02.007
  3. Bedini, E., 2011, "Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data," Advances in Space Research, Vol. 47, No. 1, pp. 60-73. https://doi.org/10.1016/j.asr.2010.08.021
  4. Boardman, J.W. and Kruse, F.A., 1994, "Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada," Proc. of the ERIM 10th Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, May 9-12, pp. I-407-I-418.
  5. Boardman, J.W. and Kruse, F.A., 2011, "Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49 No. 11 PART 1, pp. 4138-4152. https://doi.org/10.1109/TGRS.2011.2161585
  6. Boardman, J.W., 1994, "Geometric mixture analysis of imaging spectrometery data," Proc. of the 1994 International Geoscience and Remote Sensing Symposium, IEEE GRSS, Pasadena, CA, August 8-12, pp. 2369-2371.
  7. Boardman, J.W., Kruse, F.A. and Green, R.O., 1995, "Mapping target signatures via partial unmixing of AVIRIS data: in Summaries," Proc. of the 5th JPL Airborne Earth Science Workshop, JPL Publication 95-1, Vol. 1, JPL, Pasadena, CA, January 23-26, pp. 23-26.
  8. Chi, K.H. and Lee, H.J., 2007, "Extraction of pyrophyllite mineralized zone using characteristics of spectral reflectance of rock samples," Korean Journal of Remote Sensing, Vol.23, No.6, pp. 493-500.
  9. Clark, R.N., King, T.V.V., Kleijwa, M., Swayze, G.A. and Vergo, N., 1990, "High spectral resolution reflectance spectroscopy of minerals," Journal of Geophysical Research, Vol. 95, No. B8, pp. 12653-12680. https://doi.org/10.1029/JB095iB08p12653
  10. Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R. and Sutley, S.J., 2007, "USGS digital spectral library splib06a," U.S. Geological Survey, Digital Data Series 231, http://speclab.cr.usgs.gov/spectral.lib06.
  11. Cocks, T., Jenssen, R., Stewart, A., Wilson, I. and Shields, T., 1998, "The HyMap airborne hyperspectral sensor: the system, calibration and performance," Proc. of the 1st EARSeL Workshop on Imaging Spectroscopy, EARSeL, Zurich, October 6-8, pp. 37-43.
  12. Datt, B., McVicar, T.R., Van Niel, T.G., Jupp, D.L.B. and Pearlman, J.S., 2003, "Pre-processing EO-1 Hyperion hyperspectral data to support the application of agricultural indices," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1246-1259. https://doi.org/10.1109/TGRS.2003.813206
  13. Gaffey, S.J., 1985, "Reflectance spectroscopy in the visible and near infrared (0.35-2.55 microns): Applications in carbonate petrology," Geology, Vol. 13, No. 4, p. 270-273. https://doi.org/10.1130/0091-7613(1985)13<270:RSITVA>2.0.CO;2
  14. Gaffey, S.J., 1986, "Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35-2.55 microns): calcite, aragonite and dolomite," American Mineralogist, Vol. 71, No. 1-2, pp. 151-162.
  15. Green, A.A., Berman, M., Switzer, P. and Craig, M.D., 1988, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 1, pp. 65-74. https://doi.org/10.1109/36.3001
  16. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R. and Williams, O., 1998, "Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)," Remote Sensing of Environment, Vol. 65, No. 3, pp. 227-248. https://doi.org/10.1016/S0034-4257(98)00064-9
  17. Hall, D.K., Foster, J.L., Chein, J.Y.L. and Riggs, G.A., 1995, "Determination of actual snow covered area using Landsat TM and digital elevation model data in Glacier National Park, Montana," Polar Record, Vol. 31, No. 177, pp. 191-198. https://doi.org/10.1017/S0032247400013693
  18. Harris, J.R., Mcgregor, R. and Budkewitsch, P., 2010, "Geological analysis of hyperspectral data over southwest Baffin Island: methods for producing spectral maps that relate to variation in surface lithologies," Canadian Journal of Remote Sensing, Vol. 36, No. 4, pp. 412-435. https://doi.org/10.5589/m10-072
  19. Harris, J.R., Rogge, D., Hitchcock., R., Ijewliw, O. and Wright, D., 2005, "Mapping, lithology in Canada's Arctic: application of hyperspectral data using the minimum noise fraction transform and matched filtering," Canadian Journal of Earth Sciences, Vol. 42, No. 12, pp. 2173-2193. https://doi.org/10.1139/e05-064
  20. Harsanyi, J.C. and Chang, C.I., 1994, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, pp. 779-785. https://doi.org/10.1109/36.298007
  21. Hunt, G.R. and Salisbury, J.W., 1971, "Visible and near infrared spectra of minerals and rocks: II. Carbonates," Modern Geology, Vol. 2, pp. 23-30.
  22. Hyun, C.U. and Park, H.D., 2007, "Assessment technique of deterioration of granite using reflectance spectroscopy," Journal of Korean Society for Geosystem Engineering, Vol. 44, No. 6, pp. 500-509.
  23. Hyun, C.U. and Park, H.D., 2010, "Weathering degree assessment of tuff stone monument using reflectance spectroscopy," Journal of Korean Society for Geosystem Engineering, Vol. 47, No. 4, pp. 515-529.
  24. Jackson, R.D., Slater, P.N. and Pinter, P.J., 1983, "Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres," Remote Sensing of the Environment, Vol. 15, No. 3, pp. 187-208.
  25. Kruse, F.A., Boardman, J.W. and Huntington, J.F., 2003, "Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1388-1400. https://doi.org/10.1109/TGRS.2003.812908
  26. Lee, H.J., Kim, E.J. and Moon, D.H., 2011, "Identification of advanced argillic-altered rocks of the Haenam area, using by ASTER spectral analysis," Economic and Environmental Geology, Vol. 44, No. 6, pp. 463-474.
  27. Lee, H.J., Kim, I.J., Chi, K.H., Kim, E.J. and Jang, D.H., 2009, "Extraction model of non-metallic mine using multi-spectral ASTER SWIR data," Journal of the Korean Geomorphological Association, Vol. 16, No. 3, pp. 77-86.
  28. Noh, J.H. and Oh, S.J., 2005, "Hydrothermal alteration of the Pungchon limestone and the formation of high-Ca limestone," Journal of the Geological Society of Korea, Vol. 41, No. 2, pp. 175-197.
  29. Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D. and Carman, S.L., 2003, "Hyperion, a spacebased imaging spectrometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1160-1173. https://doi.org/10.1109/TGRS.2003.815018
  30. Rowan, L.C., Simpson, C.J. and Mars, J.C., 2004, "Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia," Remote Sensing of Environment, Vol. 91, No. 3-4, pp. 419-431. https://doi.org/10.1016/j.rse.2004.04.007
  31. Son, Y.S., Kang, M.K. and Yoon, W.J., 2011, "Study of pyrophyllite deposit characteristics in Nohwa-do using ASTER image," Journal of Korean Society for Geosystem Engineering, Vol. 48, No. 3, pp. 335-350.
  32. Tucker, C.J., 1979, "Red and photographic infrared linear combinations for monitoring vegetation," Remote Sensing of the Environment, Vol. 8, No. 2, pp.127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  33. Vaughan, R.G., Hook. S.J., Calvin, W.M. and Taranik, J.V., 2005, "Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images," Remote Sensing of Environment, Vol. 99, No. 1-2, pp. 140-158. https://doi.org/10.1016/j.rse.2005.04.030
  34. Xu, H., 2006, "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery," International Journal of Remote Sensing, Vol. 27, No. 14, pp. 3025-3033. https://doi.org/10.1080/01431160600589179