Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine

Phenothiazine계 전도성고분자의 합성 및 유기박막태양전지로의 적용 연구

  • Yoo, Han-Sol (Department of Industrial Chemistry, Sangmyung University) ;
  • Park, Yong-Sung (Department of Industrial Chemistry, Sangmyung University)
  • Published : 2013.02.10

Abstract

In this paper, four conducting polymers (poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), and poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)) were synthesized with a high temperature and high pressure reaction. The structures of synthesized polymers were confirmed by $^1H-NMR$ and characterized by UV-Vis, cyclic voltammetry, and GPC. From the UV-Vis absorption spectra, the ${\lambda}_{max}$ values of PBPS, PHPS, PDPS, and PEHPS were 338, 341, 340, and 334 nm, respectively and their optical band gaps were 3.11, 3.13, 3.16, and 3.05 eV, respectively. To evaluate the feasible applicability as a photovoltaic cell, the devices composed of for example, ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al were fabricated using the blends of the PBPS and PDPS as a donor, and $PC_{71}BM$ as an acceptor. Then, the power conversion efficiencies (PCE) of devices were estimated as 0.076% of PBPS and 0.136% of PDPS by solar simulator.

본 연구에서는 고온 고압반응을 통하여 4종의 전도성 고분자 poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)를 합성하였다. 각 단계의 합성된 화합물의 구조는 $^1H-NMR$을 통하여 확인하였고, UV-Vis, cyclic voltammetry, GPC를 이용하여 합성된 고분자의 물성을 확인하였다. PBPS, PHPS, PDPS, PEHPS의 최대흡수파장은 각각 338, 341, 340, 334 nm이었으며, 각 고분자의 광학적 밴드 갭은 3.11, 3.13, 3.16, 3.05 eV이었다. 유기박막태양전지로서의 적용가능성을 확인하기 위해 합성된 고분자를 전자 받개 물질인 $PC_{71}BM$과 블렌딩하여 ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al 구조의 소자를 제작하였고, solar simulator로 광전변환효율을 측정하였다. PBPS의 광전변환효율은 0.076%이었고, PDPS의 광전변환효율은 0.136%이었다.

Keywords

References

  1. J. H. Yoon and K. S. Ryu, KIC News, 11, 15 (2008).
  2. H. Kim and K. Lee, Polym. Sci. Technol., 14, 15 (2003).
  3. J. Y. Lee, S. M. Lee, K. W. Song, and D. K. Moon, Eur. Polym. J., 48, 532 (2012). https://doi.org/10.1016/j.eurpolymj.2011.12.006
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt : Res. Appl., 20, 12 (2012). https://doi.org/10.1002/pip.2163
  5. J. S. Lee, Journal of the Korean Solar Energy Society, 2, 35 (2003).
  6. Q. Hou, X. Xu, T. Guo, X. Zeng, S. Luo, and L. Yang, Eur. Polym. J., 46, 2365 (2010). https://doi.org/10.1016/j.eurpolymj.2010.09.015
  7. G. Y. Chen, Y. H. Chen, Y. J. Chou, M. S. Su, C. M. Chen, and K. H. Wei, Chem. Commun., 47, 5064 (2011). https://doi.org/10.1039/c1cc10585j
  8. K. Ranjith, S. K. Swathi, A. Malavika, P. C. Ramamurthy, Sol. Energy Mater. Sol. Cells, 105, 263 (2012). https://doi.org/10.1016/j.solmat.2012.06.022
  9. J. Kim, S. H. Park, J. Kim, S. Cho, Y. Jin, J. Y. Shim, H. Shin, S. Kwon, I. Kim, K, Lee, A. J. Heeger, and H. Suh, J. Polym. Sci., Part A: Polym. Chem., 49, 369 (2011). https://doi.org/10.1002/pola.24435
  10. L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin, D. A. Ivanov, N. Leclerc, P. Leveque, and T. Heiser, Macromolecules, 43, 9779 (2010). https://doi.org/10.1021/ma102164c
  11. J. Liu, Y. Cheng, Z. Xie, Y. Geng, L. Wang, X. Jing, and F. Wang, Adv. Mater., 20, 1357 (2008). https://doi.org/10.1002/adma.200701705
  12. J. W. Park, S. J. Park, Y. H. Kim, D. C. Shin, H. You, and S. K. Kwon, Polymer, 50, 102 (2009). https://doi.org/10.1016/j.polymer.2008.10.056
  13. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  14. H. J. Song, S. M. Lee, J. Y. Lee, B. H. Choi, and D. K. Moon, Synthetic Metals, 161, 2451 (2011). https://doi.org/10.1016/j.synthmet.2011.09.026
  15. X. Guo, F. S. Kim, S. A. Jenekhe, and M. D. Watson, J. Am. Chem. Soc., 131, 7206 (2009). https://doi.org/10.1021/ja810050y
  16. J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc., 133, 20799 (2011). https://doi.org/10.1021/ja205566w
  17. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc., 126, 3378 (2004). https://doi.org/10.1021/ja039772w
  18. L. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Colle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney, and W. Zhang, Adv. Mater., 21, 1091 (2009). https://doi.org/10.1002/adma.200801650
  19. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature Photonics, 3, 297 (2009). https://doi.org/10.1038/nphoton.2009.69
  20. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater., 22, 135 (2010). https://doi.org/10.1002/adma.200990190
  21. G. Dennier, M. C. Scharber, and C. J. Brabec, Adv. Mater., 21, 1323 (2009). https://doi.org/10.1002/adma.200801283
  22. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc., 130, 3619 (2008). https://doi.org/10.1021/ja710079w
  23. I. W. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C, 112, 4350 (2008). https://doi.org/10.1021/jp075565x
  24. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, J. Polym. Sci. Part A: Polym. Chem., 48, 4823 (2010). https://doi.org/10.1002/pola.24273
  25. J. Y. Lee, M. H. Choi, H. J. Song, and D. K. Moon, J. Polym. Sci. Part A: Polym. Chem., 48, 4875 (2010). https://doi.org/10.1002/pola.24280
  26. C. J. Lin, W. Y. Lee, C. Lu, H. W. Lin, and W. C. Chen, Macromolecules, 44, 9565 (2011). https://doi.org/10.1021/ma202017q
  27. L. Yang, J. K. Feng, and A. M. Ren, J. Org. Chem., 70, 5987 (2005). https://doi.org/10.1021/jo050665p
  28. D. H. Yun, H. S. Yoo, S. W. Heo, H. J. Song, D. K. Moon, J. W. Woo, and Y. S. Park, J. Ind. Eng. Chem., 19, 421 (2013). https://doi.org/10.1016/j.jiec.2012.08.033
  29. D. H. Yun, H. S. Yoo, Y. S. Park, and J. W. Woo, Advanced Materials Research, 418, 153 (2012).
  30. H. S. Yoo, D. H. Yun, T. W. Ko, Y. S. Park, and J. W. Woo, Advanced Material Research, in press (2012).
  31. M. Sailer, M. Nonnenmacher, T. Oeser, and T. J. J. Muller, Eur. J. Org. Chem., 2, 423 (2006).
  32. J. Lee, J. I. Lee, M. J. Park, Y. K. Jung, N. S. Cho, H. J. Cho, D. H. Hwang, S. K. Lee, J. H. Park, J. Hong, H. Y. Chu, and H. K. Shim, J. Polym. Sci. Part A: Polym. Chem., 45, 1236 (2007). https://doi.org/10.1002/pola.21890
  33. Y. H. Seo, W. H. Lee, J. H. Park, C. Bae, Y. Hong, J. W. Park, and I. N. Kang, J. Polym. Sci. Part A: Polym. Chem., 50, 649 (2012). https://doi.org/10.1002/pola.25074
  34. J. Y. Choi, H. L. Choi, J. H. Kim, and B. Lee, Journal of Korean Society for Imaging Science & Technology, 13, 90 (2007).
  35. N. S. Cho, J. H. Park, S. K. Lee, J. H. Lee, H. K. Shim, M. J. Park, D. H. Hwang, and B. J. Jung, Macromolecules, 39, 177 (2006). https://doi.org/10.1021/ma051784+
  36. M. M. Alam and S. A. Jenekhe, Chem. Mater., 14, 4775 (2002). https://doi.org/10.1021/cm020600s
  37. J. H. Kim, D. Mi, I. N. Kang, W. S. Shin, S. C. Yoon, S. J. Moon, C. Lee, J. K. Lee, and D. H. Hwang, Journal of Nanoscience and Nanotechnology, 11, 5876 (2011). https://doi.org/10.1166/jnn.2011.4505
  38. M. L. Hwang, J. C. Li, E. O. Seo, S. H. Lee, and Y. S. Lee, Korean. Chem. Eng. Res., 49, 95 (2011).
  39. H. Choi and J. Y. Kim, Polym. Sci. Technol., 23, 361 (2012).
  40. S. Woong, J. B. Park, S. J. Park, M. Y. Jo, H. Suh, and J. H. Kim, Appl. Chem. Eng., 22, 15 (2011).