DOI QR코드

DOI QR Code

Electrochemical Behavior of $Li/LiV_3O_8$ Secondary Cells

  • Bak, Hyo Rim (Division of Materials Science and Engineering, Korea University) ;
  • Lee, Jae Ha (Division of Materials Science and Engineering, Korea University) ;
  • Kim, Bok Ki (Department of Electronic Engineering, Kwangwoon University) ;
  • Yoon, Woo Young (Division of Materials Science and Engineering, Korea University)
  • Published : 2013.03.20

Abstract

Li/$LiV_3O_8$ secondary cells with Li-foil and Li-powder anodes were fabricated, and their electrical properties were compared. Using the powder anode, a cell with an initial discharge capacity of 260 mAh $g^{-1}$ that could be operated for over 100 cycles was obtained. The porous Li-powder electrode was safely synthesized by pressing an emulsion droplet onto an SUS mesh. A threefold increase in the electrical conductivity of the $LiV_3O_8$ cathode was achieved by the addition of carbon using a vibration pot mill. Using the powder anode resulted in 80% capacity retention at the $100^{th}$ cycle, while that using the foil electrode was 46%; the 1.0 C-rate/0.1 C-rate capacity ratio also increased from 44% to 60%. A cell employing the $LiV_3O_8$-carbon composite cathode showed better electrical performance, a capacity retention of 90% after 50 cycles, and an increase in rate capacity ratio. The crystal structure and morphology of the $LiV_3O_8$-C composite were investigated by x-ray diffraction and scanning electron microscopy.

Keywords

References

  1. W. S. Kim and W. Y. Yoon, Electrochim. Acta. 50, 541 (2004). https://doi.org/10.1016/j.electacta.2004.03.066
  2. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, J. Power Sources 74, 219 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
  3. P. C. Howlett, D. R. MacFarlane, and A. F. Hollenkamp, J. Power Sources 114, 277 (2003). https://doi.org/10.1016/S0378-7753(02)00603-1
  4. D. K. Yun and W. Y. Yoon, Electron. Mater. Lett. 7, 221 (2011).
  5. J. S. Kim, W. Y. Yoon, K. Y. Yi, B. K. Kim, and B. W. Cho, J. Power Sources 165, 620 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.033
  6. J. Desilvestro and O. Haas, J. Electrochem. Soc. 137, 5C (1990). https://doi.org/10.1149/1.2086438
  7. L.-L. Xie, L.-Q. You, C.-F. Zhang, D.-W. Song, L.-B. Qu, and X.-Y. Cao, Electron. Mater. Lett. 8, 411 (2012).
  8. S. Panero, M. Pasquali, and G. Pistoia, J. Electrochem. Soc. 130, 1225 (1983). https://doi.org/10.1149/1.2119923
  9. K. Nassau and D. W. Murphy, J. Non-Cryst. Solids 44, 297 (1981). https://doi.org/10.1016/0022-3093(81)90032-6
  10. S. Y. Chew, C. Feng, S. H. Ng, J. Wang, Z. Guo, and H. Liu, J. Electrochem. Soc. 154, 633 (2007). https://doi.org/10.1149/1.2734778
  11. I. W. Seong, K. T. Kim, and W. Y. Yoon, J. Power Sources 189, 511 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.029
  12. J. H. Perepezko, Mat. Sci. Eng. 65, 1548 (1984).
  13. W. Y. Yoon, J. S. Paik, D. LaCourt, and J. H. Perepezko, J. Appl. Phys. 60, 3489 (1986). https://doi.org/10.1063/1.337599

Cited by

  1. Synthesis of Nanocobalt Powders for an Anode Material of Lithium-Ion Batteries by Chemical Reduction and Carbon Coating vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/378103
  2. Chemical Sodiation of V2O5 by Na2S vol.640, pp.15, 2013, https://doi.org/10.1002/zaac.201400381
  3. High-energy cathode materials for Li-ion batteries: A review of recent developments vol.58, pp.11, 2013, https://doi.org/10.1007/s11431-015-5933-x
  4. 고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석 vol.18, pp.4, 2015, https://doi.org/10.5229/jkes.2015.18.4.137
  5. Enhanced Capacity of Lithium Secondary Batteries Using a Li-Powder Anode vol.4, pp.5, 2013, https://doi.org/10.1021/acsaem.1c00799