DOI QR코드

DOI QR Code

Using a Functional Epoxy, Micron Silver Flakes, Nano Silver Spheres, and Treated Single-Wall Carbon Nanotubes to Prepare High Performance Electrically Conductive Adhesives

  • Cui, Hui-Wang (Key State Laboratory for New Displays & System Applications and SMIT Center, College of Automation and Mechanical Engineering, Shanghai University) ;
  • Li, Dong-Sheng (Key State Laboratory for New Displays & System Applications and SMIT Center, College of Automation and Mechanical Engineering, Shanghai University) ;
  • Fan, Qiong (Key State Laboratory for New Displays & System Applications and SMIT Center, College of Automation and Mechanical Engineering, Shanghai University)
  • Published : 2013.05.20

Abstract

In this study, a matrix resin containing a functional epoxy, a reactive diluent, a silane-coupling agent, and a curing agent was used to fabricate three modal electrically conductive adhesives (ECAs) with micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes (CNT). Results showed that too many micron silver flakes reduced the bulk resistivity and adhesion strength of uni-modal ECAs (matrix resin and micron silver flakes). As the nano silver spheres increased, the bulk resistivity of bi-modal ECAs (matrix resin, micron silver flakes, and nano silver spheres) firstly decreased, and then increased again. The adhesion strength decreased also. The bulk resistivity and adhesion strength of tri-modal ECAs (matrix resin, micron silver flakes, nano silver spheres, and treated CNT) both were reduced by the treated CNT greatly. These ECAs could be cured at $120^{\circ}C$ or any higher temperature than this with different curing time. They all had high temperature stability with a pyrolysis temperature above $350^{\circ}C$ and a glass transition temperature around $180^{\circ}C$.

Keywords

References

  1. Y. Li and C. P. Wong, Mater. Sci. Eng. R 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  2. I. Mir and D. Kumar, Int. J. Adhes. Adhes. 28, 362 (2008). https://doi.org/10.1016/j.ijadhadh.2007.10.004
  3. F. Tan, X. Qiao, J. Chen, and H. Wang, Int. J. Adhes. Adhes. 26, 406 (2006). https://doi.org/10.1016/j.ijadhadh.2005.06.005
  4. W. Lin, X. Xi, and C. Yu, Synthetic Met. 159, 619 (2009). https://doi.org/10.1016/j.synthmet.2008.12.003
  5. Y. Zhang, S. Qi, X. Wu, and G. Duan, Synthetic Met. 161, 516 (2011). https://doi.org/10.1016/j.synthmet.2011.01.004
  6. H. K. Kim and F. G. Shi, Microelectron. J. 32, 315 (2001). https://doi.org/10.1016/S0026-2692(01)00007-6
  7. S. Xu and D. A. Dillard, Int. J. Adhes. Adhes. 23, 235 (2003). https://doi.org/10.1016/S0143-7496(03)00027-7
  8. C. F. Goh, H. Yu, S. S. Yong, S. G. Mhaisalkar, F. Y. C. Boey, and P. S. Teo, Thin Solid Films 504, 416 (2006). https://doi.org/10.1016/j.tsf.2005.09.122
  9. Z. Wu, J. Li, D. Timmer, K. Lozano, and S. Bose, Int. J. Adhes. Adhes. 29, 488 (2009). https://doi.org/10.1016/j.ijadhadh.2008.10.003
  10. Y. Guan, X. Chen, F. Li, and H. Gao, Int. J. Adhes. Adhes. 30, 80 (2010). https://doi.org/10.1016/j.ijadhadh.2009.09.003
  11. R. S. Rorgren and J. Liu, IEEE Trans. Compon. Pack. Manuf. 18, 305 (1995). https://doi.org/10.1109/96.386266
  12. W.-K. Tao, S. Chen, X.-H. Liu, H.-W. Cui, T.-A. Chen, and J. Liu, Proc. 2010 11th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 225, Xi'an, China (2010).
  13. D.-S. Li, H.-W. Cui, S. Chen, Q. Fan, Z.-C. Yuan, L.-L. Ye, and J. Liu, ECS Trans. 34, 583 (2011).
  14. D.-S. Li, H.-W. Cui, Q. Fan, Y.-Y. Duan, Z.-C. Yuan, L.-L. Ye, and J. Liu, Proc. 2011 12th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 430, Shanghai, China (2011).
  15. W.-H. Du, H.-W. Cui, S. Chen, Z.-C. Yuan, L.-L. Ye, and J. Liu, ECS Trans. 34, 805 (2011).
  16. C. Khoo and J. Liu, Circuit World 22, 9 (1996).
  17. Y. Fu, J. Liu, and M. Willander, Int. J. Adhes. Adhes. 19, 281 (1999). https://doi.org/10.1016/S0143-7496(98)00071-2
  18. Y. Fu, T. Wang, and J. Liu, IEEE Trans. Compon. Pack. Manuf. 26, 193 (2003). https://doi.org/10.1109/TCAPT.2002.806179
  19. L. L. Ye, Z. H. Lai, J. Liu, and A. Tholen, IEEE Trans. Compon. Pack. Manuf. 22, 299 (1999). https://doi.org/10.1109/6144.774749
  20. Y. Fu, M. Willander, and J. Liu, J. Electron. Mater. 30, 866 (2001). https://doi.org/10.1007/s11664-001-0073-4
  21. W.-H. Du, C.-E. Fu, S. Chen, H.-W. Cui, X.-H. Liu, T.-A. Chen, and J. Liu, Proc. 2010 11th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 199, Xi'an, China (2010).
  22. W.-H. Du, H.-W. Cui, S. Chen, Z.-C. Yuan, L.-L. Ye, and J. Liu, Proc. 2011 12th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 1053, Shanghai, China (2011).
  23. H.-X. Lai, X.-Z. Lu, H.-W. Cui, X.-H. Liu, S. Chen, T.-A. Chen, and J. Liu, Proc. 2010 11th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 235, Xi'an, China (2010).
  24. Q. Fan, H.-W. Cui, C.-E. Fu, D.-S. Li, X. Tang, Z.-C. Yuan, L.-L. Ye, and J. Liu, ECS Trans. 34, 811 (2011).
  25. Q. Fan, H.-W. Cui, D.-S. Li, Z.-L. Hu, Z.-C. Yuan, L.-L. Ye, and J. Liu, Proc. 2011 12th Int. Conf. Electron. Pack. Technol. High Density Pack, p. 423, Shanghai, China (2011).
  26. Z.-M. Mo, X.-T. Wang, T.-B. Wang, S.-M. Li, Z.-H. Lai, and J. Liu, J. Electron. Mater. 31, 916 (2002). https://doi.org/10.1007/s11664-002-0183-7
  27. M. Inoue, H. Muta, T. Maekawa, S. Yamanaka, and K. Suganuma, J. Electron. Mater. 37, 462 (2008). https://doi.org/10.1007/s11664-007-0378-z
  28. M. Inoue and J. Liu, Proc. 2008 2nd Electron.s Systemintegration Technol. Conf, p. 1147, Greenwich, CT, USA (2008).
  29. E. Darque-Ceretti, D. Helary, and M. Aucoutier, Glass Int. 26, 13 (2003).
  30. S. G. Prolongo and A. Urena, Int. J. Adhes. Adhes. 29, 23 (2009). https://doi.org/10.1016/j.ijadhadh.2008.01.001
  31. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002). https://doi.org/10.1063/1.1462610
  32. H.-H. Lee, K.-S. Chou, and Z.-W. Shih, Int. J. Adhes. Adhes. 25, 437 (2005). https://doi.org/10.1016/j.ijadhadh.2004.11.008
  33. H. P. Wu, J. F. Liu, X. J. Wu, M. Y. Ge, Y. W. Wang, G. Q. Zhang, and J. Z. Jiang, Int. J. Adhes. Adhes. 26, 617 (2006). https://doi.org/10.1016/j.ijadhadh.2005.10.001
  34. W. T. Cheng, Y. W. Chih, and W. T. Yeh, Int. J. Adhes. Adhes. 27, 236 (2007). https://doi.org/10.1016/j.ijadhadh.2006.05.001
  35. Y. Fu, M. Willander, and J. Liu, J. Electron. Mater. 30, 866 (2001). https://doi.org/10.1007/s11664-001-0073-4
  36. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  37. W. E. Wong, P. E. Sheehan, and C. M. Liebert, Science 277, 1971 (1997). https://doi.org/10.1126/science.277.5334.1971
  38. S. Kotthous, B. H. Gunther, and R. Hang, IEEE. Trans. Compon. Pack. Technol. 20, 15 (1997). https://doi.org/10.1109/95.558539
  39. H. Zhao, X. Luo, and Y. Luo, Chinese J. Appl. Chem. 25, 2630 (2008).
  40. S.-W. Kuo, Y.-C. Chung, K.-U. Jeong, and F.-C. Chang, J. Phys. Chem. C 112, 16470 (2008). https://doi.org/10.1021/jp805156t
  41. S.-W. Kuo and H.-T. Tsai, Macromolecules 42, 4701 (2009). https://doi.org/10.1021/ma900640a
  42. G. E. Begtrup, K. G. Ray, B. M. Kessler, T. D. Yuzvinsky, H. Garcia, and A. Zettl, Phys. Rev. Lett. 99, 155901 (2007). https://doi.org/10.1103/PhysRevLett.99.155901
  43. K. Zhang, G. Malcolm Stocks, and J. Zhong, Nanotechnology 18, 285703 (2007). https://doi.org/10.1088/0957-4484/18/28/285703
  44. R. Zhang, K.-S. Moon, H. Jiang, W. Lin, and C. P. Wong, Proc. PORTABLE-POLYTRONIC 2008 2nd IEEE Int. Interdisciplinary Conf. Portable Information Devices, p. 1, Germany (2008).
  45. Y. Li, K.-S. Moon, and C. P. Wong, US Patent: 7527749 (2009).
  46. P. Mach, D. Busek, and R. Polansky, Proc. 2010 3rd Electron. System-Integration Technol. Conf., p. 1, Berlin, Germany (2010).

Cited by

  1. Computational Modelling of Delamination and Disbond in Adhesively Bonded Joints and the Relevant Damage Detection Approaches vol.1, pp.4, 2013, https://doi.org/10.7569/raa.2013.097315
  2. Ultra-fast photonic curing of electrically conductive adhesives fabricated from vinyl ester resin and silver micro-flakes for printed electronics vol.4, pp.31, 2014, https://doi.org/10.1039/c4ra00292j
  3. Sintering behavior and effect of silver nanoparticles on the resistivity of electrically conductive adhesives composed of silver flakes vol.28, pp.24, 2013, https://doi.org/10.1080/01694243.2014.967829
  4. Using Ozawa method to study the curing kinetics of electrically conductive adhesives vol.117, pp.3, 2013, https://doi.org/10.1007/s10973-014-3902-4
  5. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives vol.119, pp.1, 2015, https://doi.org/10.1007/s10973-014-4195-3
  6. Electrical property enhancement of electrically conductive adhesives through Ag-coated-Cu surface treatment by terephthalaldehyde and iodine vol.3, pp.24, 2013, https://doi.org/10.1039/c5tc00593k
  7. Synthesis and electrical properties of silver nanoplates for electronic applications vol.33, pp.2, 2015, https://doi.org/10.1515/msp-2015-0032
  8. Sintering Behavior and Electrical Property of Surface Treated Silver Nanoparticle for Electronic Application vol.645, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/kem.645-646.157
  9. Hydrothermal Fabrication of Silver Nanowires-Silver Nanoparticles-Graphene Nanosheets Composites in Enhancing Electrical Conductive Performance of Electrically Conductive Adhesives vol.6, pp.6, 2013, https://doi.org/10.3390/nano6060119
  10. Ecofriendly Catechol Lipid Bioresin for Low-Temperature Processed Electrode Patterns with Strong Durability vol.12, pp.14, 2013, https://doi.org/10.1021/acsami.0c00199
  11. Relationship between Viscosity, Microstructure and Electrical Conductivity in Copolyamide Hot Melt Adhesives Containing Carbon Nanotubes vol.13, pp.20, 2013, https://doi.org/10.3390/ma13204469
  12. Effect of Curing Agents on Electrical Properties of Low-Temperature Curing Conductive Coatings and Thermodynamic Analysis vol.11, pp.6, 2021, https://doi.org/10.3390/coatings11060656