DOI QR코드

DOI QR Code

Determination of the Optimum Friction Conditions for Prediction of Deformation Texture in Al/Al-Mg/Al Composite Sheets during Cold-Roll Cladding

냉간압연 클래딩 시 Al/Al-Mg/Al 복합판재의 변형집합조직 예측을 위한 최적의 마찰조건 도출

  • Kim, Eun-Young (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Cho, Jae-Hyung (Korea Institute of Materials Science Research Station) ;
  • Kim, Hyoung-Wook (Korea Institute of Materials Science Research Station) ;
  • Choi, Shi-Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 김은영 (순천대학교 재료 금속공학과) ;
  • 조재형 (한국기계연구원 부설 재료연구소) ;
  • 김형욱 (한국기계연구원 부설 재료연구소) ;
  • 최시훈 (순천대학교 재료 금속공학과)
  • Published : 2013.01.25

Abstract

Finite element analysis (FEA) was conducted to find an optimum friction condition for cold-roll cladding of Al/Al-Mg/Al composite sheets. X-ray diffraction was used to analyze the initial macrotexture in each component layer of Al/Al-Mg/Al composite sheets. Electron back-scatter diffraction (EBSD) was used to analyze the heterogeneity of the deformation texture in each component layer through the thickness direction after cold-roll cladding. The velocity gradient tensors determined by the FEA were used in a rate sensitive polycrystal model to simulate the evolution of deformation texture through the thickness direction of Al/Al-Mg/Al composite sheets during cold-roll cladding. The theoretical simulation provided an optimum friction condition for cold-roll cladding analysis of the Al/Al-Mg/Al composite sheets.

Keywords

References

  1. A. Gupta, S. T. Lee, R. B. Wagstaff, W. Gallerneault, and J. Fenton, JOM, August, 62 (2007).
  2. J. S. Yoon, S. H. Lee, M. S. Kim, J. Mater. Proc. Tech. 111, 85 (2001). https://doi.org/10.1016/S0924-0136(01)00517-9
  3. M. K. Khan, M. E. Fitzpatrick, S. V. Hainsworth, and L. Edwards, Mater. Sci. Eng. A 527, 297 (2009). https://doi.org/10.1016/j.msea.2009.07.035
  4. R. Jamaati and M. R. Toroghinejad, Mater. Sci. Eng. A 527, 2320 (2010). https://doi.org/10.1016/j.msea.2009.11.069
  5. M. Z. Quadir, André Wolz, M. Hoffman, and M. Ferry, Scr. Mater. 58, 959 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.022
  6. R. Jamaati, and M. R. Toroghinejad, J. Mater. Eng. Perf. 20, 191 (2011). https://doi.org/10.1007/s11665-010-9664-7
  7. H. W. Kim, M. G. Kim, J. H. Cho, and S. H. Kim, Proceedings of the 12th International Conference on Aluminum Alloys, Alloys, September 5-9, Yokohama, Japan (2010).
  8. Y. S. Liu, S. B. Kang, and H. S. Ko, Scr. Mater. 37, 411 (1997). https://doi.org/10.1016/S1359-6462(97)00102-4
  9. S. H. Choi, J. C. Brem, F. Barlat, and K. H. Oh, Metall. Trans. 30A, 377 (1999).
  10. S. Li, S. B. Kang, and H. S. Ko, Metall. Trans. 31A, 99 (2000).
  11. H. Jin and D. J. Lloyd, Mater. Sci. Eng. A 399, 358 (2005). https://doi.org/10.1016/j.msea.2005.04.027
  12. S. H. Choi, J. K. Choi, H. W. Kim, and S. B. Kang, Mater. Sci. Eng. A 519, 77 (2009). https://doi.org/10.1016/j.msea.2009.05.063
  13. S. H. Choi, J. C. Brem, F. Barlat, and K. H. Oh, Acta Mater. 44, 1853 (2000).
  14. F. Barlat and J. Liu, Mater. Sci. Eng. A 257, 47 (1998). https://doi.org/10.1016/S0921-5093(98)00823-5
  15. S. H. Choi, F. Barlat, and J. Liu. Metall. Trans. 32A, 2239 (2001).
  16. G. Winther, D. Juul Jensen, and N. Hansen, Acta Mater. 45, 2455 (1997). https://doi.org/10.1016/S1359-6454(96)00345-X
  17. H. G. Kang, J. K. Kim, M. Y. Huh, and O. Engler, Mater. Sci. Eng. A 452, 347 (2007).
  18. I. K. Kim, J. Y. Song, Y. S. Lee, and S. I. Hong, Korean J. Met. Mater. 49, 664 (2011). https://doi.org/10.3365/KJMM.2011.49.8.664
  19. I. K. Kim, J. Y. Song, O. K. Hwan, and S. I. Hong, Korean J. Met. Mater. 50, 345 (2012).
  20. S. H. Choi, J. H. Cho, K. H. Oh, K. Chung, and F. Barlat, Int. J. Mech. Sci. 42, 1571 (2000). https://doi.org/10.1016/S0020-7403(99)00091-0
  21. J. E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals (1984).
  22. S. Matthies, H. R. Wenk, and G. W. Vinel, J. Appl. Crystall. 21, 285 (1988). https://doi.org/10.1107/S0021889888000275
  23. M. Francois, J. M. Sprauel, and J. L. Lebrun, Textures Microstruct. 14, 169 (1991). https://doi.org/10.1155/TSM.14-18.169
  24. S. Kobayashi, S. I. Oh, and T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, New York (1989).
  25. $DEFORM^{TM}$ user's manual, version 10.2. (2011).
  26. C. G. Kang, H. G. Kang, H. C. Kim, M. Y. Huh, and H. G. Suk, J. Mater. Proc. Tech. 187, 542 (2007).
  27. A. S. Khan and S. Huang, Continuum Theory of Plasticity, Wiley-Interscience (1995).
  28. S. R. Kalidindi, C. A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids 40, 537 (1992). https://doi.org/10.1016/0022-5096(92)80003-9
  29. S. H. Choi, Acta Mater. 51, 1775 (2003). https://doi.org/10.1016/S1359-6454(02)00576-1
  30. L. S. Tóth, P. Gilormini, and J. J. Jonas, Acta Metall. 36, 3077 (1988). https://doi.org/10.1016/0001-6160(88)90045-4
  31. W. C. Liu, C. S. Man, and J. G. Morris, Scr. Mater. 45, 807 (2001). https://doi.org/10.1016/S1359-6462(01)01074-0
  32. J. Liu and J. G. Morris, Mater. Sci. Eng. A 357, 277 (2003). https://doi.org/10.1016/S0921-5093(03)00210-7
  33. W. C. Liu and J. G. Morris, Scr. Mater. 52, 1317 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.031
  34. O. Engler, M. Y. Huh, and C. N. Tome, Metall. Mater. Trans. A 31, 2299 (2000). https://doi.org/10.1007/s11661-000-0146-7
  35. K. H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2