DOI QR코드

DOI QR Code

Dye-Sensitized Solar Cells Employing Laser Patterned Counter Electrodes

레이져 식각된 상대전극이 채용된 염료감응태양전지

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Yoo, Kicheon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Ko, Min Jae (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Published : 2013.03.25

Abstract

In order to enhance the energy conversion efficiency by increasing the surface area of the counter electrode (CE), we employed different substrates with the flat glass, FTO (fluorine-doped tin oxide), and laser patterned FTO. Ruthenium (Ru) films with thicknesses of 34 and 46 nm were deposited by atomic layer deposition (ALD) on each substrate. In this way, the dye sensitized solar cell (DSSC) device with an area of $0.45cm^2$ with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/Ru/substrate structure was prepared. The microstructure of the CE was investigated with FE-SEM, and the photovoltaic properties were characterized by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) measurement. When we assumed the surface morphology as the array of a pyramid (width 0.24, length 0.24, and height $0.14{\mu}m$), we determined the surface area of the substrate of the flat glass, FTO, and laser patterned FTO as $1.36{\times}10^8$, $2.32{\times}10^8$, and $2.56{\times}10^8{\mu}m^2$, respectively. CV and impedance results revealed an increase in catalytic activity and a decrease in interface resistance with increasing Ru thickness and surface area. When the Ru thickness was 34 nm (and 46 nm), the energy conversion efficiency of each substrate was 1.55% (1.96%), 2.62% (2.92%), and 2.95% (3.32%), respectively. These results suggest that increasing the Ru catalytic layer thickness and surface area of the CE contributed to increasing the efficiency. Moreover, increasing of surface area through laser patterning was more suitable for increasing the efficiency than the conventional flat glass, and FTO substrates.

Keywords

References

  1. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  2. Y. H. Luo, D. M. Li, and Q. B. Meng, Adv. Mater. 21, 4647 (2009). https://doi.org/10.1002/adma.200901078
  3. R. Jose, V. Thavasi, and S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009). https://doi.org/10.1111/j.1551-2916.2008.02870.x
  4. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  5. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc. 144, 876 (1997). https://doi.org/10.1149/1.1837502
  6. H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Sci. 18, 141 (2007). https://doi.org/10.1007/s10876-006-0092-7
  7. A. Salomonsson, R. M. Petoral, K. Uvdal, C. Aulin, P. Kall, L. Ojamae, M. Strand, M. Sanati, and A. L. Spetz, J. Nanopart. Res. 8, 899 (2006). https://doi.org/10.1007/s11051-005-9058-1
  8. S. F. Yin, B. Q. Xu, S. J. Wang, and C. T. Au, Appl. Catal. 301, 202 (2006). https://doi.org/10.1016/j.apcata.2005.12.005
  9. N. Bedford, C. Dablemont, G. Viau, P. Chupas, and V. Petkov, J. Phys. Chem. C 111, 18214 (2007). https://doi.org/10.1021/jp0752062
  10. S. J. Park, W. H. Kim, H. B. R. Lee, W. J. Maeng, and H. Kim, Microelectronic Eng. 85, 39 (2008). https://doi.org/10.1016/j.mee.2007.01.239
  11. M. Tapajna, P. Písecny, R. Luptaka, K. Husekova, K. Fröhlich, L. Harmatha, J. C. Hooker, F. Roozeboom, and J. Jergele, Mater. Sci. Semicond. Process. 7, 271 (2004). https://doi.org/10.1016/j.mssp.2004.09.011
  12. H. M. Kwon, D. W. Han, D. J. Kwak, Y. M. Sung, J. Appl. Phys. 10, 172 (2010).
  13. Y. Kashiwa, Y. Yoshida, S. Hayase, Appl. Phys. Lett. 1, 1 (2008).
  14. C. Thambidurai, Y. G. Kim, J. L. Stickney, Electrochimica Acta. 53, 6157 (2008). https://doi.org/10.1016/j.electacta.2008.01.003
  15. S. H. Kwon, O. K. Kwon, J. H. Kim, H. R. Oh, K. H. Kim, and S.W. Kang, J. Electrochem. Soc. 155, H296 (2008). https://doi.org/10.1149/1.2868779
  16. S. S. Yim, D. J. Lee, K. S. Kim, M. S. Lee, S. H. Kim, and K. B. Kim, Electrochem. and Solid-State Lett. 11, K89, (2008).
  17. G. W. Lee, D. Kim, M. J. Ko, K. Kim, N. G. Park, Solar Ener. 84, 418 (2010). https://doi.org/10.1016/j.solener.2009.12.012
  18. J. J. Han, K. C. Yoo, M. J. Ko, B. K. Yu, Y. Y. Noh, and O. S. Song, Met. Mater. Int. 18, 105 (2012). https://doi.org/10.1007/s12540-012-0013-2