DOI QR코드

DOI QR Code

Effects of Mg Addition and Temperatures on the Melt-Down Behavior of Al-xMg-CNT Complex Powder Compacts

Al-xMg-CNT 복합분말체의 용융특성에 미치는 마그네슘 첨가와 온도의 영향

  • Lim, Jung-Kyu (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology) ;
  • Choe, Kyong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Sang-Sub (Department of Metallurgical Engineering, Inha University) ;
  • Cho, Gue-Serb (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology)
  • 임정규 (한국생산기술연구원 융합신공정연구그룹) ;
  • 최경환 (한국생산기술연구원 융합신공정연구그룹) ;
  • 김상섭 (인하대학교 금속공학과) ;
  • 조규섭 (한국생산기술연구원 융합신공정연구그룹)
  • Published : 2013.04.25

Abstract

We conducted melt-down experiments on Al-xMg-carbon nanotube (CNT) complex powder compacts at $700^{\circ}C$ and $800^{\circ}C$ for carrying the CNTs into the molten Al7021 matrix alloy. The parameters in the melting experiments were the holding temperatures and the amount of Mg content. The microstructures of the melt-down compacts were observed by optical microscopy (OM) and field emission scanning electro-microscopy (FESEM). The several phases obtained from the reaction products within the Al-xMg-CNT compacts were identified by energy dispersive X-ray spectroscopy (EDXS) and X-Ray diffractometry (XRD). The complete melt-down area was increased due to a large addition of Mg in the compacts and outer areas remained as undissolved powder compacts due to the large number of oxidation products such as MgO, $MgAl_2O_3$ and $Al_2O_3$. CNTs were observed on the surface of Al powders with oxidation products at $700^{\circ}C$ in a melting experiment. However, at $700^{\circ}C$, the CNT agglomerates moved away from the center because of the poor wettability and low density of the CNTs.

Keywords

References

  1. G. S. Cho, J. K. Lim, H. Jang, and K. H. Choe, Korean J. Met. Mater. 48, 462 (2010). https://doi.org/10.3365/KJMM.2010.48.05.462
  2. C. F. Deang, D. Z. Wang, X. X. Zhang, and A. B. Li, Mater. Sci. Eng. A444, 138 (2007).
  3. J. H. Han, H. K. Seck, and K. K. Jee, J. Kor. Foundrymen's Soc. 29, 245 (2009).
  4. T. Noguchi, A. Magario, S. Fukazawa, S. Shuimizu, J. Beppu, and M. Seki, Mater. Trans. JIM. 45, 602 (2004). https://doi.org/10.2320/matertrans.45.602
  5. B. C. Pai, G. Ramani, and R. M. Pillai, J. Mater. Sci. 30, 1903 (1995). https://doi.org/10.1007/BF00353012
  6. C. B. Mo, Y. J. Jeong, and B. K. Lim, Polymer Sci. Technol. 18, 528 (2007).
  7. S. Zhou, X. Zhang, and Z. Ding, Compo. Sci. Technol. 30, 301 (2007).
  8. K. B. Lee, H. S. Sim, S. W. Heo, H. R. Yoo, S. Y. Cho, and H. Kwon, J. Kor. Inst. Met. & Mater. 38, 1631 (2000).
  9. A. Contreras, E. Bedolla, and R. Peez, Acta Mater. 52, 985 (2004). https://doi.org/10.1016/j.actamat.2003.10.034
  10. H. M. Jang, C. M. Lee, J. H. Lee, J. H. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 383 (2009).
  11. A. D. McLeod, and C. M. Gabryel, Metall. Mater. Trans. A23, 1279 (1992).
  12. S. Ren, X. He, X. Qu, and Y. Li, Compo. Sci. Technol. 67, 2103 (2007). https://doi.org/10.1016/j.compscitech.2006.11.006