DOI QR코드

DOI QR Code

Microstructural Analysis of Si-Ti-Fe Alloy Anode Materials for Li-ion Secondary Batteries

리튬이차전지용 Si-Ti-Fe 합금 음극소재의 미세구조 분석

  • Chae, Jeong Eun (Measurement & Analysis Division, National Nanofab Center) ;
  • Yang, Jun-Mo (Measurement & Analysis Division, National Nanofab Center) ;
  • Park, Kyung Jin (Measurement & Analysis Division, National Nanofab Center) ;
  • Yoo, Jung Ho (Measurement & Analysis Division, National Nanofab Center) ;
  • Park, Yun Chang (Measurement & Analysis Division, National Nanofab Center) ;
  • Sung, Min-Suk (Division of Materials Development Team, Iljin Electric Co., Ltd.) ;
  • Yu, Hyun-Jong (Department of Energy Storage & Conversion, Graduate School of Green Energy Technology Chungnam National University) ;
  • Kim, Sung-Soo (Department of Energy Storage & Conversion, Graduate School of Green Energy Technology Chungnam National University)
  • 채정은 (나노종합기술원 특성평가팀) ;
  • 양준모 (나노종합기술원 특성평가팀) ;
  • 박경진 (나노종합기술원 특성평가팀) ;
  • 유정호 (나노종합기술원 특성평가팀) ;
  • 박윤창 (나노종합기술원 특성평가팀) ;
  • 성민석 (일진전기 차세대전지연구소) ;
  • 유현종 (충남대학교 녹색에너지기술전문대학원) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원)
  • Published : 2013.06.15

Abstract

For improving anode materials in Li-ion batteries, the Si system has been noted by many researchers because it has higher energy density and capacity than the graphite anode material used currently. However, the life cycle of the Si anode tends to decrease due to the remarkable volume expansion which is caused by insertion of Li ions when the cell is charged. In this study, we controlled the size of active Si particles, which are dispersed in the inactive matrix, down to several tens of nm as active materials by adding heterogeneous elements. To understand the reaction mechanism of active Si dispersed in the inactive matrix, we analyzed the microstructure of the Si-Ti-Fe alloy using high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The volume expansion behavior was improved by employing the $TiFeSi_2$ matrix and refining the active Si particle size, and life performance of the Li-ion batteries was enhanced.

Keywords

References

  1. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008). https://doi.org/10.1038/nnano.2007.411
  2. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Nov_ak, Adv. Mater. 10, 725 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  3. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chem. Soc. Rev. 39, 3115 (2012).
  4. M. N. Obrovac and L. Christensen, Electrochem. Solid- State Lett. 7, A93 (2004). https://doi.org/10.1149/1.1652421
  5. O. Mao, R. L. Turner, I. A. Courtney, B. D. Fredericksen, M. I. Buckett, L. J. Krause, and J. R. Dahn, Electrochem. Solid-State Lett. 2, 3 (1999). https://doi.org/10.1149/1.1390715
  6. H. Jung, Y. U. Kim, M. S. Sung, Y. Hwa, G. Jeong, G. B. Kim, and H. J. Sohn, J. Mater. Chem. 21, 11213 (2011). https://doi.org/10.1039/c1jm11020a
  7. H. Y. Lee and S. M. Lee, J. Power Sources 112, 649 (2002). https://doi.org/10.1016/S0378-7753(02)00461-5
  8. Y. S. Lee, J. H. Lee, Y. W. Kim, Y. K. Sun, and S. M, Lee, Electrochim Acta 52, 1523 (2006). https://doi.org/10.1016/j.electacta.2006.02.052
  9. F. Weitzer, J.C. Schuster, M. Naka, F. Stein, and M. Palm, Intermetallics 16, 273 (2008). https://doi.org/10.1016/j.intermet.2007.10.006
  10. V. Raghavan, J Phase Equilibria, and Diffusion 30, 393 (2009). https://doi.org/10.1007/s11669-009-9555-5
  11. J. Wolfenstine, J. Power sources, 79, 111 (1999). https://doi.org/10.1016/S0378-7753(99)00052-X
  12. G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang, Appl. Phys. Lett. 75, 2447 (1999). https://doi.org/10.1063/1.125043
  13. H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, U. J. Mo, and N. Pei, Solid State Ionics 135, 181 (2000). https://doi.org/10.1016/S0167-2738(00)00362-3
  14. W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, and N. L. Wu, J. Power Sources, 140, 139 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.032
  15. L. Fang and B. V. R. Chowdari, J. Power Sources 97, 181 (2001).
  16. S. Bourderau, T. Brousse, and D. M. Schleich, J. Power Sources 81, 223 (1999).
  17. H. Jung, M. Park, Y. G. Yoon, G. B. Kim, S. K. Joo, J. Power Sources 115, 346 (2003). https://doi.org/10.1016/S0378-7753(02)00707-3
  18. H. Y. Hyun, M. J. Kim, J. H. Yoo, J. M. Yang, I. H. Oh, S. M. Lee, and Y. J. Oh, Korean J. Met. Mater. 49, 250 (2011). https://doi.org/10.3365/KJMM.2011.49.3.250