DOI QR코드

DOI QR Code

Effects of Cooling Rates on Hydride Reorientation and Mechanical Properties of Zirconium Alloy Claddings under Interim Dry Storage Conditions

건식중간저장 조건 하에서 냉각속도에 따른 지르코늄 합금 피복관 수소화물 재배열 및 기계적 특성 평가

  • Min, Su-Jeong (Nuclear and Energy Engineering Dept., Dongguk University) ;
  • Kim, Myeong-Su (Nuclear and Energy Engineering Dept., Dongguk University) ;
  • Won, Chu-Chin (Nuclear and Energy Engineering Dept., Dongguk University) ;
  • Kim, Kyu-Tae (Nuclear and Energy Engineering Dept., Dongguk University)
  • 민수정 (동국대학교 원자력 및 에너지공학부) ;
  • 김명수 (동국대학교 원자력 및 에너지공학부) ;
  • 원주진 (동국대학교 원자력 및 에너지공학부) ;
  • 김규태 (동국대학교 원자력 및 에너지공학부)
  • Published : 2013.07.10

Abstract

As-received Zr-Nb cladding tubes and 600 ppm hydrogen-charged tubes were employed to evaluate the effects of cladding cooling rates on the extent of hydride reorientation from circumferential hydrides to radial ones and mechanical property degradations with the use of cooling rates of 2, 4 and $15^{\circ}C/min$ from $400^{\circ}C$ to room temperature simulating cladding cooling under interim dry storage conditions. The as-received cladding tubes generated nearly the same ultimate tensile strengths and plastic elongations, regardless of the cooling rates, because of a negligible hydrogen content in the cladding. The 600 ppm-H cladding tubes indicate that the slower cooling rate generated the larger radial hydride fraction and the longer radial hydrides, which resulted in greater mechanical performance degradations. The cooling rate of $2^{\circ}C/min$ generates an ultimate tensile strength of 758 MPa and a plastic elongation of 1.0%, whereas the cooling rate of $15^{\circ}C/min$ generates an ultimate tensile strength of 825 MPa and a plastic elongation of 15.0%. These remarkable mechanical property degradations of the 600 ppm-H cladding tubes with the slowest cooling rate may be characterized by cleavage fracture surface appearance enhanced by longer radial hydrides and their higher fraction that have been precipitated through a relatively larger nucleation and growth rate.

Keywords

References

  1. KAIF, 2010 Nuclear Energy Yearbook, p.209, KAIF (2010).
  2. B. Choi, Development of Evaluation Technology for Spent Nuclear Fuel Integrity during Interim Dry Storage, p.48, MEST (2008).
  3. USNRC, Cladding Considerations for the Transportation and Storage of Spent Fuel, SFST-ISG-11 Revision 3 (2003).
  4. K. Kim, Nucl. Eng. Int. May, 13 (2010).
  5. K. Kim. Int. J Nucl. Power, May, 335 (2011).
  6. H. Kim, Y. Jeong, and K. Kim, Nucl. Eng. Tech. 49, 249 (2010).
  7. K. B. Colas, A. T. Motta, J. D. Almer, M. R. Daymond, M. Kerr, A. D. Banchik, P. Vizcaino, and J. R. Santisteban, Acta Mater. 58, 6575 (2010). https://doi.org/10.1016/j.actamat.2010.07.018
  8. H. Kim, I. Kim, S. Park, J. Park, and Y. Jeong, Korean J. Met. Mater. 48, 717 (2010).
  9. K. Kese, Hydride Re-Orientation in Zircaloy and its Effect on the Tensile Properties, SKI Report (1998).
  10. J. H. Hong, Nuclear Materials, p.392, Hans house (2012).
  11. P. Vizcaino, A. D. Banchik, and J. P. Abriata, J. Nucl. Mater. 304, 96 (2002). https://doi.org/10.1016/S0022-3115(02)00883-8
  12. A. M. Garde, G. P. Smith, and R. C. Pirek, Zirconium in the Nuclear Industry, pp.407-430, ASTM STP-1295 (1996).
  13. R. P. Marshall, J. Nucl. Mater. 24, 34 (1967). https://doi.org/10.1016/0022-3115(67)90078-5
  14. R. P. Marshall, J. Nucl. Mater. 24, 49 (1967). https://doi.org/10.1016/0022-3115(67)90079-7
  15. J. J. Kearns and C. R. Woods, J. Nucl. Mater. 20, 241 (1966). https://doi.org/10.1016/0022-3115(66)90036-5
  16. M. Leger and A Donner, Can. Metall. Q. 24, 235 (1985). https://doi.org/10.1179/cmq.1985.24.3.235
  17. R. P. Marshall and M. R. Louthan, Jr., Trans. ASM 56, 693 (1963).
  18. M. R. Louthan and R. P. Marshall, J. Nucl. Mater. 9, 170 (1963). https://doi.org/10.1016/0022-3115(63)90132-6
  19. R. N. Singh, R. Kishore, S. S. Sinha, T. N. Sinha, and B. P. Kashyap, J. Nucl. Mater. 325, 26 (2004). https://doi.org/10.1016/j.jnucmat.2003.10.009
  20. S. I. Hong and K. W. Lee, J. Nucl. Mater. 340, 203 (2005). https://doi.org/10.1016/j.jnucmat.2004.11.014
  21. H. C. Chu, S. K. Wu, K. F. Chien, and R. C. Kuo, J. Nucl. Mater. 362, 93 (2007). https://doi.org/10.1016/j.jnucmat.2006.11.008
  22. W. Qin, N. A. P. Kiran Kumar, and J. A. Szpunar, J. Kozinski, Acta Mater. 59, 7010 (2011). https://doi.org/10.1016/j.actamat.2011.07.054
  23. Int. Cent. Diffr. Data, The powder diffraction file (2006).
  24. J. S. Bradbrook, G. W. Lorimer, and N. Ridley. J. Nucl. Mater. 42, 142 (1972). https://doi.org/10.1016/0022-3115(72)90021-9
  25. R. L. Beck, Zirconium-Hydrogen Phase System. Trans ASM 1, 542 (1962).
  26. M. Grange, J. Besson, and E. Andrieu. Metall. Mater. Trans. A 31, 679 (2000).
  27. Y. Seol, Y. Jung, B. Chol, J. Park, and S. Hong, Korean J. Met. Mater. 49, 355 (2011).