A Study on Application of Electrical Resistivity Survey to Detect the Leakage of Embankment with Weak Zone

취약대가 존재하는 제방의 누수 탐지를 위한 전기비저항 탐사의 적용성 연구

  • Park, Samgyu (Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Jaehong (Infra Structure Research Center Kwater)
  • Published : 2013.04.01

Abstract

The water leakage of reservoir embankment usually occurs around channelling pipes, which gives little influence on the embankment in a normal state. However, the embankment can be destroyed when the water level of reservoir increases with heavy rain and the rainy season in summer. Investigating the water vein and its path is therefore very important from the viewpoint of disaster prevention and embankment maintenance. The water leakage in dams and levees where the channelling pipes are working as weak zone was analyzed by using both numerical simulation and experimental method in this study. To detect the water leakage, an electrical resistivity survey was used and investigated for its' usability. The numerical results show the size and location of weak zone increases the importance of selection of electrode spacing. The leakage experiments of model embankment present the best result is obtained under the conditions of electrode spacing of 0.3m and dipole-dipole array. By studying the water leakage in dams and levees, the electrical resistivity survey is observed it is a very useful method to predict the leakage.

댐 및 저수지 제방의 누수현상은 통관 주변에서 주로 일어나며 평상 시에는 제방에 큰 영향을 미치지 않지만, 호우나 장마철과 같이 저수지 수위가 상승하면 제방의 붕괴 위험을 가져온다. 따라서 이러한 수맥과 경로를 조사하는 것은 재해 예방과 제방 관리의 측면에서 매우 중요하다. 본 연구에서는 수치적인 방법과 실험적인 방법을 사용하여 통관이 취약대로 작용하는 댐 및 제방에서의 누수현상을 분석하였다. 누수탐지에는 전기비저항 탐사를 사용하여 그 유용성을 검토하였다. 수치해석의 결과에서는 취약대의 크기와 위치에 따라 전극 간격의 설정이 중요함을 보여주었고, 모형제방의 누수실험에서는 전극간격을 0.3m로 쌍극자 배열을 사용하는 것이 가장 좋은 결과를 얻을 수 있을 것으로 판단되었다. 누수현상의 분석을 통하여 댐 및 제방시설물의 누수탐지에 전기 비저항 탐사가 유용함을 확인하였다.

Keywords

References

  1. Cho, I. K., Kang, H. J., Lee, B. H., Kim, B. H., Yi S. S., Park, Y. G. and Lee, B. H.(2006), Safety index evaluation from resistivity monitoring data for a reservoir dyke, Mulli-Tamsa, Vol. 9, No. 2, pp. 155-162 (in Korean).
  2. Chung, S. H., Kim, J. H., Yang, J. M., Han, K. E. and Kim, Y. W.(1992), Delineation of water seepage in earth-fill embankments by electrical resistivity method, The Journal of Engineering Geology. Vol. 2, No 1, pp. 47-57 (in Korean).
  3. Kim, J. H.(1996), Dipro for windows version 4.0 manual, HeeSong-Geotech. DaeJeon. pp. 21-40 (in Korean).
  4. Kim, K. J., Cho, I. K. and Jeoung J. H.(2008), Time-lapse inverstion of 2D resistivity monitoring data, Geophysics and Geophysical Exploration, Vol. 11, No. 4, pp. 326-334 (in Korean).
  5. Kim, J. H., Lee M. J., Song, Y. H. and Chung, S. H.(2001), A study on the modified electrode arrays in two-dimensional resistivity survey, Geophysics and Geophysical Exploration, Vol. 4, No 3, pp. 59-69 (in Korean).
  6. Park, S. G., Kim, J. H. and Seo, G. W.(2005), Application of electrical resistivity monitoring technique to maintenance of embankments, Mulli-Tamsa, Vol. 8, No. 2, pp. 177-183 (in Korean).
  7. Song, S. H., Kwon, B. D., Choi, J. H. and Kim, K. M.(2001), Application of hydrogeological and geophysical methods to leakage problem of dike. Journal of Korean Society for Geosystem Engineering, Vol. 38, No 4, pp. 292-300 (in Korean).
  8. Song, S. H., Lee, K. S., Kim, J. H. and Kwon, B. D.(2000), Application of SP and pole-pole array electrical resistivity surveys to the seawater leakage problem of the embankment, Econ. Environ. Geol, Vol. 33, No. 5, pp. 417-424 (in Korean).
  9. Telford, W. M., Geldart, L. P., Sheriff, R. F. and Keys, D. A.(1976), Applied geophysics. cambridge university press. UK. 860 p.