DOI QR코드

DOI QR Code

Science High School Students' Understanding of the Movement of an Irreversible Adiabatic System Toward an Equilibrium State

비가역 단열과정에서 열역학적 평형상태로의 이동에 관한 과학고 학생들의 이해

  • Published : 2013.06.28

Abstract

This study investigated students' understanding of the movement of an adiabatic system toward an equilibrium state when the system changed irreversibly. The participants were 140 Korean students at a science high school, who had learned thermodynamics in their introductory physics class. A questionnaire that contained two situations, are involving an adiabatic double chamber and the other involving an adiabatic vertical syringe, was given to the students. The analysis showed that the students frequently used the formula '$pV^{\gamma}$ = constant' without any consideration of whether the process was reversible or not, although this formula should only be used for reversible adiabatic processes. In addition, the students predicted that the pistons for an adiabatic box or an adiabatic syringe would oscillate eternally because the students believed that the term 'adiabatic' indicated conservation of mechanical energy. They did not recognize the fact that the second law was derived from collisions among many particles, and they suffered from difficulties in predicting the final state of a system after an irreversible process had been completed.

본 연구에서는 비가역 단열과정에서 열역학적 평형상태로의 이동에 관한 과학고 학생들의 사고과정을 조사하였다. 연구대상은 서울시내 1개 과학고에 재학 중인, 일반물리학 수준의 열역학을 배운 140명의 학생들이다. 밀폐된 공간에서 좌우로 자유롭게 움직이는 피스톤의 운동과 수직으로 놓여있는 주사기에서 피스톤 위에 추를 갑자기 올려놓거나 치웠을 때의 피스톤의 운동을 예측하는 문항을 제시하였다. 문제 상황을 해결하기 위해 상당수의 학생들은 '$pV^{\gamma}$ = 일정'이라는 수식을 사용하였는데, 학생들은 이 수식이 가역과정에서만 성립함을 알지 못하였다. 또한 단열상자 안에 있는 피스톤이나 단열 주사기에 위치한 피스톤은 멈추지 않고 영원히 진동할 것이라고 예측하였는데, 이는 열역학적 상황에서 역학적 에너지 보존 법칙을 적용했기 때문에 나타난 결과이다. 학생들은 수많은 입자들이 충돌하는 상황에서 열역학 제2법칙이 적용된다는 것을 인지하지 못하였으며, 비가역적인 상황에서 계의 최종상태를 예측하는 데 어려움을 겪었다.

Keywords

References

  1. W. M. Christensen, D. E. Meltzer and C. A. Ogilvie, Am. J. Phys. 77, 907 (2009). https://doi.org/10.1119/1.3167357
  2. L. C. McDermott and E. F. Redish, Am. J. Phys. 67, 755 (1999). https://doi.org/10.1119/1.19122
  3. A. Hobson, Am. J. Phys. 34, 411 (1966). https://doi.org/10.1119/1.1973009
  4. J. L. Lebowitz, Physica A 194, 1 (1993). https://doi.org/10.1016/0378-4371(93)90336-3
  5. R. H. Swendsen, Am. J. Phys. 76, 643 (2008). https://doi.org/10.1119/1.2894523
  6. B. R. Bucy, J. R. Thompson and D. B. Mountcastle, in AIP Conf. Proc, edited by P. Heron, L. McCullough and J. Marx (Salt Lake City, Utah, August 10-11, 2005), p. 81.
  7. J. Lee and J. Song, Sae Mulli 55, 182 (2007).
  8. M. Samiullah, Am. J. Phys. 75, 608 (2007). https://doi.org/10.1119/1.2721588
  9. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, Extended, 8th ed. (Wiley, Hoboken, 2008), p. 526.
  10. H. D. Young, R. A. Freedman and F. W. Sears, Sears and Zemansky's University Physics, 12th ed. (Pearson Addison-Wesley, San Francisco, 2008), p. 662.
  11. E. N. Miranda, Eur. J. Phys. 29, 937 (2008). https://doi.org/10.1088/0143-0807/29/5/007
  12. E. A. Gislason, Am. J. Phys. 78, 995 (2010). https://doi.org/10.1119/1.3480028
  13. J. Anacleto and M. G. Pereira, Eur. J. Phys. 30, 177 (2009). https://doi.org/10.1088/0143-0807/30/1/018
  14. C. H. Kautz, P. R. L. Heron, M. E. Loverude, L. C. McDermott and R. Kaufman et al., Am. J. Phys. 73, 1055 (2005). https://doi.org/10.1119/1.2049286
  15. C. H. Kautz, P. R. L. Heron, P. S. Shaffer and L. C. McDermott, Am. J. Phys. 73, 1064 (2005). https://doi.org/10.1119/1.2060715
  16. R. Leinonen, E. Rasanen, M. Asikainen and P. E. Hirvonen, Eur. J. Phys. 30, 593 (2009). https://doi.org/10.1088/0143-0807/30/3/016
  17. R. Leinonen, M. Asikainen and P. Hirvonen, Res. Sci. Educ. 42, 1165 (2012). https://doi.org/10.1007/s11165-011-9239-0
  18. M. E. Loverude, C. H. Kautz and P. R. L. Heron, Am. J. Phys. 70, 137 (2002). https://doi.org/10.1119/1.1417532
  19. W. G. Hoover and B. Moran, Am. J. Phys. 47, 851 (1979). https://doi.org/10.1119/1.11628
  20. C. E. Mungan, The Physics Teacher 41, 450 (2003). https://doi.org/10.1119/1.1625202
  21. U. Besson, Eur. J. Phys. 24, 245 (2003). https://doi.org/10.1088/0143-0807/24/3/303
  22. B. Crosignani, P. D. Porto and M. Segev, Am. J. Phys. 64, 610 (1996). https://doi.org/10.1119/1.18163
  23. A. E. Curzon, Am. J. Phys. 37, 404 (1969). https://doi.org/10.1119/1.1975592
  24. C. Kittel and H. Kroemer, Thermal Physics, 2nd ed. (W. H. Freeman and Company, New York, 1980), p. 173.
  25. J. Anacleto, J. Ferreira and A. Soares, Eur. J. Phys. 30, 487 (2009). https://doi.org/10.1088/0143-0807/30/3/007
  26. R. P. B. H. L. Cockerham, Am. J. Phys. 37, 675 (1969). https://doi.org/10.1119/1.1975769