DOI QR코드

DOI QR Code

Genetic Diversity and Population Genetic Structure of Exochorda serratifolia in South Korea

가침박달 집단의 유전다양성 및 유전구조 분석

  • Hong, Kyung Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jei Wan (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kang, Jin Taek (Center for Forest & Climate Change, Korea Forest Research Institute)
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 강진택 (국립산림과학원 기후변화연구센터)
  • Published : 2013.03.31

Abstract

Genetic diversity and population genetic structure were estimated in nine natural populations of Exochorda serratifolia in South Korea using ISSR marker system. Average of polymorphic loci per primer was 5.8 (S.D.=2.32) and percentage of polymorphic loci per population was 78.7% with total 35 loci from 6 ISSR primers. In AMOVA, 27.8% of total genetic variation came from genetic difference among populations and 72.2% was resulted from difference among individual trees within populations. Genetic differentiations by Bayesian inference were 0.249 of ${\theta}^{11}$ and 0.227 of $G_{ST}$. Inbreeding coefficient for total populations was 0.412. There was significant correlation between genetic distance and geographic distance among populations. On the results of Bayesian cluster analysis, nine populations were assigned into three groups. The first group included 5 populations, and the second and the third had two populations per group, respectively. These three regions could explain 10.0% of total genetic variation from hierarchical AMOVA, and the levels of among-population and among-individual were explained 19.7% and 70.3%, respectively. The geographic distribution of populations following the three Bayesian clusters could be explained with mountain range as Baekdudaegan which is the main chain of mountains in Korea. The mountains as the physical barrier might hamper gene flow in the pearlbush. So when protected areas are designated for conservation of this species, we should consider those three regions into considerations and would better to choose at least one population per region.

우리나라에 분포하는 가침박달 9개 집단의 유전다양성과 유전구조를 ISSR 표지자를 이용하여 분석하였다. 선발된 6개 ISSR primer에서 다형성 band는 35개로 primer당 평균 5.8개(S.D.=2.32), 집단별 다형적 유전자좌의 비율은 평균 78.7%로 나타났다. AMOVA에서 전체 유전변이의 27.8%는 집단간 차이에 기인하며, 72.2%는 집단내 개체 간 차이로 설명할 수 있었다. 베이즈 방법에 따른 유전분화는 ${\theta}^{11}$$G_{ST}$가 각각 0.249와 0.227로 추정되었으며, 전체 집단에 대한 근친교배율은 0.412로 계산되었다. 집단간의 지리적 거리와 유전적 거리에 대한 상관성 분석에서 지리적 거리가 멀수록 유전적으로 상이한 것으로 나타났다. 베이즈 군집분석에서 가침박달 집단은 유전변이 분포에 따라서 1) 대구 지역의 2집단 및 안동, 청송, 예천 집단이 하나의 구역으로, 그리고 2) 단양, 영월 집단과 3) 임실, 청주 집단이 각각 하나의 구역으로 묶여서 총 3개 구역으로 나눌 수 있었다. 구역의 유전변이는 백두대간과 정맥의 산줄기를 경계로 분포하는 것으로 생각되며, AMOVA에서 전체 유전변이량의 10.0%는 구역간, 19.7%는 집단간, 나머지 70.3%는 집단내 개체간 차이로 설명되었다. 아울러 가침박달의 현지내 유전자원보존을 위한 유전다양성 평가와 유전구조 분석결과의 적용에 대하여 살펴보았다.

Keywords

References

  1. 고성덕. 2006. 가침박달(Exochorda serratifolia) 군락의 생태학적 특성에 관한 연구. 과학교육연구소논총 22(2): 1-24.
  2. 박지훈, 이상헌. 2008. 화분분석으로 본 충남지역의 후빙기 환경 연구- 기후변화 및 인간활동에 동반한 식생 변천에 주목하여. 한국고생물학회지 24(1): 55-75.
  3. 산림청(국립수목원). 2008. 한국 희귀식물 목록집. 지오북. 서울. pp. 332.
  4. 이기의, 한교필, 박완근, 김일섭. 1987. 야생 가침박달(Exochorda serratifolia)의 조경 원예화에 관한 연구. 한국조경학회지 15(2): 139-148.
  5. 이창복. 2006. 대한식물도감(원색). 향문사. 서울. pp. 1928.
  6. 장진성, 김휘, 장계선. 2011. 한국동식물도감 제43권 식물(수목)편. 디자인포스트. 서울. pp. 511.
  7. 한상돈, 홍용표, 권해연, 양병훈, 김찬수. 2005. 들쭉나무 격리잔존 2개 집단의 유전변이. 한국임학회지 94(4): 209-213.
  8. Alvarez, N. et al. 2009. History or ecology? Substrate types as a major diver of spatial genetic structure in Alpine plants. Ecology Letters 12(7): 632-640. https://doi.org/10.1111/j.1461-0248.2009.01312.x
  9. Beaumont, M.A. and Rannala, B. 2004. The Bayesian revolution in genetics. Nature Reviews Genetics 5: 251-261.
  10. Dudley, N. (Editor). 2008. Guidelines for Applying Protected Area Management Categories. IUCN. Switzerland. pp. 86.
  11. Duminil, J., Fineschi, S., Hampe, A., Jordano, P., Salvini, D., Vendramin, G. and Petit, R. 2007. Can population genetics structure be predicted from life-history traits? American Naturalist 169(5): 663-672.
  12. Gao, F.Y. 1998. Exochorda: five species or one? A biosystematic study of Rosaceous genus Exochorda. Ph. D. Thesis of Wageningen Agricultural University. Netherlands. pp. 133.
  13. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  14. Foll, M., Beaumont, M.A. and Gaggiotti, O. 2008. An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179: 927-939. https://doi.org/10.1534/genetics.107.084541
  15. Holsinger, K.E., Lewis, P.O. and Dey, D.K. 2002. A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: 1157-1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x
  16. Hong, Y.P., Kwon, H.Y., Kim, Y.Y., Kim, C.S. and Han, S.D. 2003. Distribution of I-SSR variants in natural populations of Smile Rosebay (Rhododendron schlippenbachii Maxim.) in Korea. Journal of Korean Forestry Society 92(5): 497-503.
  17. Hughes, A.R., Inouye, B.D., Johnson, M.T.J., Underwood, N. and Vellend, M. 2008. Ecological consequences of genetic diversity. Ecology Letters 11: 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x
  18. Jump, A.S., Marchant, R. and Penuelas, J. 2008. Environmental change and the option value of genetic diversity. Trends in Plant Science 14(1): 51-58.
  19. Lee, S.W., Kim, Y.M., Kim, W.W. and Chung, J.M. 2002. Genetic variation of I-SSR markers in the natural populations of rare and endangered tree species, Oplopanax elatus in Korea. Journal of Korean Forestry Society 91(5): 565-573.
  20. Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  21. Meudt, H.M. and Clarke, A.C. 2007. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science 12(3): 106-117. https://doi.org/10.1016/j.tplants.2007.02.001
  22. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  23. Ohsawa, T. and Ide, Y. 2008. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography 17: 152-163. https://doi.org/10.1111/j.1466-8238.2007.00357.x
  24. Palsboll, P.J., Berube, M. and Allendorf, F.W. 2006. Identification of management units using population genetic data. Trends in Ecology and Evolution 22(1): 11-16.
  25. Peakall, R. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  26. Prance, M. 2006. Strategies for in situ conservation. pp. 105-116. In: J. Henry, ed. Plant Conservation Genetics. Haworth Press, Inc. NY. USA.
  27. Pritchard, J.K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  28. Qiu, Y.X., Fu, C.X. and Comes, H.P. 2011. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution 59: 225-244. https://doi.org/10.1016/j.ympev.2011.01.012
  29. Rossetto, M. 2006. Impact of habitat fragmentation of plant populations. pp. 117-129. In: J. Henry, ed. Plant Conservation Genetics. Haworth Press, Inc. NY. USA.
  30. White, T.L., Adams, W.T. and Neale, D.B. 2007. Forest Genetics. Cromwell Press, UK. pp. 682.
  31. Yeh, F.C. and Boyle, T.J.B. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129: 157.

Cited by

  1. Genetic Diversity and Genetic Structure of Phellodendron amurense Populations in South Korea vol.103, pp.1, 2014, https://doi.org/10.14578/jkfs.2014.103.1.51
  2. Analysis of genetic diversity and differentiation of artificial populations of yellowhorn (Xanthoceras sorbifolium) in China using ISSR markers vol.27, pp.5, 2016, https://doi.org/10.1007/s11676-016-0225-2
  3. 희귀식물 가침박달(Exochorda serratifolia S.Moore)의 분포, 외부형태학적 형질 및 토양특성에 관한 연구 vol.30, pp.6, 2013, https://doi.org/10.13047/kjee.2016.30.6.929
  4. ISSR 마커를 이용한 서식 면적에 따른 퉁퉁마디의 유전적 다양성 vol.31, pp.6, 2013, https://doi.org/10.13047/kjee.2017.31.6.492
  5. 제주도 개가시나무의 유전구조와 유전적 다양성 vol.107, pp.2, 2013, https://doi.org/10.14578/jkfs.2018.107.2.151