Screw Configuration Effect on Physicochemical Characteristics of Extrudates Produced by Twin-Screw Extrusion of Rice Grain

스크루 배열이 쌀 압출성형물의 물리화학적 특성에 미치는 영향

  • Published : 2013.02.28

Abstract

This study was done to investigate the effects of five screw configurations (config.) on rice grain extrudates. Five different screw configurations, in which the angles ($45^{\circ}$, $90^{\circ}$, and $135^{\circ}$) and number of kneading screws were different, were used in extruding rice. The pressure and specific mechanical energy (SME) increased (5,748.76 kPa and 52.80 kJ/kg, respectively) as the angle and number of kneading screws increased. As shown in Config. 5, the angle of two kneading screws increased to $135^{\circ}$ from $45^{\circ}$. The expansion ratio (ER) and water solubility index (WSI) increased as shear increased. In Config. 5, the ER increased to 3.06 and the WSI increased 16.2 times, unlike the control item. The results can be applied in producing processed rice, such as rice expansion snack and cereal for breakfast, and solubilizing functional dietary fiber in water.

본 연구에서는 쌀 이축 압출 성형 중 반죽 스크루의 배열의 변화가 압출 시스템 변수 및 압출물의 물리화학적 특성에 미치는 영향을 분석하였으며 수행한 결과는 다음과 같다. 스크루 배열 변화시 조리 구간에 배열한 반죽 스크루의 각도 및 길이의 변화에 따라 충진도 및 입자크기를 관찰하면서 압력형성과 비기계적 에너지 소요 변화와 관계를 파악할 수 있었다. 충진도 및 압력은 config. 1에서 고전단처리가 가능한 config. 5로 증가함에 따라 규칙적으로 증가되는 결과를 나타내었으며, 고전단력이 발생하는 config. 5에서 충진길이는 115 mm의 가장 높은 값을 나타내었으며 압력은 5,748.76 kPa로 가장 높은 갚을 형성하였다. 입자크기 및 비기계적 에너지 관계는 압력은 config. 1에서 config. 5로 증가함에 따라 비기계적 에너지 증가되었으며, 쌀의 입자 크기는 감소되었다. Config. 5에서 비기계적 에너지 값이52.80 kJ/kg이며 입자크기는 0.22에서 0.28 mm 범위로 감소되었다. 팽화율, 수분용해지수, 전분 소화율은 config. 1에서 고전단력 처리가 가능한 config. 5로 증가함에 따라 규칙적으로 증가되는 결과를 나타내었다. 팽화율은 config. 1에서 1.85를 나타내었으나 config. 5에서 충진 길이 및 압력 증가의 영향으로 3.06으로 증가되었다. 수분용해지수와 전분 소화율도 원재료에서 각각 1.36%, 10.53%을 나타내었으나 config. 5에서 입자크기 감소 및 SME 증가의 영향으로 수분용해지수는 22.08%, 전분소화율은 16.57%로 증가되었다. 본 연구를 통하여 스크루 배열 변화는 시스템 변수 및 물리화학적 특성에 영향을 미치는 중요한 공정 변수임을 확인하였다. 압출 성형공정에서 스크루 배열 변화에 따라 저전단에서 고전단 공정을 제어 할 수 있으며, 사출구 압력, 비기계적 에너지, 압출물의 물리화학적 특성 등의 변수를 결정하는데 중요한 역할을 한다는 것이 이 연구를 통하여 확인할 수 있었다.

Keywords

References

  1. Altan A, McCarthy KL, Maskan M. 2009. Effect of screw configuration and raw material on some properties of barley extrudates. J. Food Eng. 92: 377-382. https://doi.org/10.1016/j.jfoodeng.2008.12.010
  2. Altomare RE, Ghossi P. 1986. An analysis of residence time distribution patterns in a twin screw cooking extruder. Biotechnol. Progr. 2: 157-163. https://doi.org/10.1002/btpr.5420020310
  3. Barres C, Vergnes B, Tayeb J. Della VG. 1990. Transformation of wheat flour by extrusion cooking: Influence of screw configuration and operating conditions. Cereal Chem. 67: 427-433.
  4. Bawiskar S, White LJ. 1998. Melting model for modular self wiping co-rotating twin screw extruders. Polym. Eng. Sci. 38: 727-740. https://doi.org/10.1002/pen.10238
  5. Bhattacharya S, Choudhury GS. 1994. Twin-screw extrusion of rice flour: Effect of extruder length-to-diameter ratio and barrel temperature on extrusion parameters and product characteristics. J. Food Process. Pres. 18: 389-406. https://doi.org/10.1111/j.1745-4549.1994.tb00261.x
  6. Bindzus W, Living S, Gloria-Hernandez H, Fayard G, Lengerich BV, Meuser F. 2002. Glass transition of extruded wheat, corn and rice starch. Starch-Starke. 54: 394-400.
  7. Brenner PE, Richmond P, Smith AC. 1986. Aqueous dispersion rheology of extrusion cooked maize. J. Texture Stud. 17: 51-60. https://doi.org/10.1111/j.1745-4603.1986.tb00713.x
  8. Caballero BA. 2001. Efecto de la harina de arroz sobre las propiedades funcionales de masas de harina de trigo. Alimentacion, equipos y tecnologia. 20: 49-56.
  9. Choudhury GS, Gautam A. 1998. Comparative study of mixing elements during twin screw extrusion of rice flour. Food Res. Int. 31:7-17. https://doi.org/10.1016/S0963-9969(98)00053-2
  10. Chang KLB, Halek GW. 1991. Analysis of shear and thermal history during co-rotating twin-screw extrusion. J. Food Sci. 56: 518-531. https://doi.org/10.1111/j.1365-2621.1991.tb05317.x
  11. Choudhury, GS, Gautam A. 1998. Comparative study of mixing elements during twin-screw extrusion of rice flour. Food Res. Int. 31: 7-17. https://doi.org/10.1016/S0963-9969(98)00053-2
  12. Cisneros FH, Kokini JL. 2002. A generalized theory linking barrel fill length and air bubble entrapment during extrusion of starch. J. Food Eng. 51: 139-149. https://doi.org/10.1016/S0260-8774(01)00050-4
  13. Davidson VJ, Paton D, Diosady LL, Rubin LJ. 1984. A model for mechanical degradation of wheat starch in a single-screw extruder. J. Food Sci. 49: 1154-1157. https://doi.org/10.1111/j.1365-2621.1984.tb10416.x
  14. Della Valle G, Tayeb J, Melcion JP. 1987. Relationship of extrusion variables with pressure and temperature during twin screw extrusion cooking of starch. J. Food Eng. 6: 423-444. https://doi.org/10.1016/0260-8774(87)90003-3
  15. Dziezak JD. 1991. Romancing the kernel : a salute to rice varieties. Food Technol. Chicago. 45: 74-80.
  16. Fan J, Mitchell JR, Blanshard JMV. 1996. The effect of sugars on the extrusion of maize grits: II. Starch conversion. Int. J. Food Sci. Technol. 31: 67-76. https://doi.org/10.1111/j.1365-2621.1996.21-318.x
  17. Gautam A, Choudhury GS. 1999a. Screw configuration effects on residence time distribution and mixing in twin-screw extruders during extrusion of rice flour. J. Food Process Eng. 22: 263-285. https://doi.org/10.1111/j.1745-4530.1999.tb00485.x
  18. Gautam A, Choudhury GS. 1999b. Screw configuration effects on starch breakdown during twin-screw extrusion of rice flour. J. Food Process Pres. 23: 355-375. https://doi.org/10.1111/j.1745-4549.1999.tb00391.x
  19. Gogoi BK, Choudhury GS, Oswalt AJ. 1996a. Effects of location and spacing of reverse screw and kneading element combination during twin-screw extrusion of starchy and proteinaceous blends. Food Res. Int. 29: 505-512. https://doi.org/10.1016/S0963-9969(96)00051-8
  20. Hagenimana A, Ding X, Fang T. 2006. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 43: 38-46. https://doi.org/10.1016/j.jcs.2005.09.003
  21. Hakulin S, Linko YY, Linko P, Seiler K, Seibel W. 1983. Enzymatic conversion of starch in twin-screw HTST-Extruder. Starch-Starke. 35: 411-414. https://doi.org/10.1002/star.19830351203
  22. Harper JM. 1981. Extrusion of Foods. vol. 2. CRC Press Inc., Boca Raton, FL, USA.
  23. Kartika IA, Pontalier PY, Rigal A. 2006. Extraction of sunflower oil by twin screw extruder: Screw configuration and operating condition effects. Bioresource Technol. 97: 2302-2310. https://doi.org/10.1016/j.biortech.2005.10.034
  24. Kirby AR, Ollett AL, Parker R, Smith AC. 1988. An experimental study of screw configuration effects in the twin-screw extrusioncooking of maize grits. J. Food Eng. 8: 247-272. https://doi.org/10.1016/0260-8774(88)90016-7
  25. Kokini JL, Chang CN, Lai LS. 1991. The role of rheological properties on extrudate expansion. In: Food Extrusion Science and Technology. Marcel Dekker, NY, USA, pp. 345-360.
  26. Liu H, Corke H, Ramsden L. 1999. Functional properties and enzymatic digestibility of cationic and cross-linked cationic ae, wx, and normal maize starch. J. Agr. Food Chem. 47: 2523-2528. https://doi.org/10.1021/jf9811471
  27. Meuser F, Gimmler N, Van Lengrich B. 1991. A system analytical approach to extrusion. In: Food Extrusion Science and Technology. Marcel Dekker, NY, USA, pp. 619-630.
  28. Moraru, CI, Kokini JL. 2003. Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety. Blackwell publishing Ltd., MA, USA, pp. 147-165.
  29. Mudalamane R, Bigio DI. 2003. Process variations and the transient behavior of extruders. AICHE J. 49: 3150-3160. https://doi.org/10.1002/aic.690491215
  30. Onwulata CI, Smith PW, Konstance RP, Holsinger VH. 2001. Incorporation of whey products in extruded corn, potato or rice snacks. Food Res. Int. 34(8): 679-687. https://doi.org/10.1016/S0963-9969(01)00088-6
  31. Owusu-Ansah J, Van de Voort, FR, Stanley DW. 1983. Physicochemical changes in cornstarch as a function of extrusion variables. Cereal Chem. 60: 319-324.
  32. Pansawat N, Jangchud K, Jangchud A, Wuttijumnong P, Saalia FK, Eitenmiller RR, Phillips RD. 2008. Effects of extrusion conditions on secondary extrusion variables and physical properties of fish, rice-based snacks. LWT-Food Sci. Technol. 41: 632-641. https://doi.org/10.1016/j.lwt.2007.05.010
  33. Ramirez-Jimenez A, Guerra-Hernandez E, Garcia Villanova B. 2003. Evolution of non-enzymatic browning during storage of infant rice cereal. Food Chem. 83: 219-225. https://doi.org/10.1016/S0308-8146(03)00068-2
  34. Senouci A. Smith AC. 1988. An experimental study of food melt rheology., I. Shear viscosity using a slit die viscometer and a capillary rheometer. Rheol. Acta. 27: 546-554. https://doi.org/10.1007/BF01329355
  35. Unlu E, Faller JF. 2002. RTD in twin-screw food extrusion. J. Food Eng. 53: 115-131. https://doi.org/10.1016/S0260-8774(01)00148-0
  36. Willett JL, Millard MM, Jasberg BK. 1997. Extrusion of waxy maize starch - melt rheology and molecular-weight degradation of amylopectin. Polymer 38: 5983-5989. https://doi.org/10.1016/S0032-3861(97)00155-9
  37. Yam, KL, Gogoi BK, Karwe MV, Wang SS. 1994. Shear conversion of corn meal by reverse screw elements during twin-screw extrusion at low temperatures. J. Food Sci. 59: 113-114. https://doi.org/10.1111/j.1365-2621.1994.tb06910.x
  38. Yeh AI, Whang SJ. 1992. Effect of screw profile on extrusioncooking of wheat flour by a twin-screw extruder. Int. J. Food Sci. Technol. 27: 557-563.
  39. Yuliani S, Torley PJ, Bruce D'Arcy B, Nicholson T, Bhandari B. 2006. Extrusion of mixtures of starch and d-limonene encapsulated with ${\beta}$-cyclodextrin: Flavour retention and physical properties. Food Res. Int. 39: 318-331. https://doi.org/10.1016/j.foodres.2005.08.005
  40. Zazueta-Morales J, Martinez-Bustos F, Jacobo-Valenzuela N, Ordorica- Falomir C, Paredes-Lopez O. 2002. Effects of calcium hydroxide and screw speed on physicochemical characteristics of extruded blue maize. J. Food Sci. 67: 3350-3358. https://doi.org/10.1111/j.1365-2621.2002.tb09590.x
  41. Zheng X, Chiang WC, Wang SS. 1995. Effect of shear energy on size reduction of starch granules in extrusion. Starch-Starke 47: 146-151. https://doi.org/10.1002/star.19950470406