DOI QR코드

DOI QR Code

Sterilization of Yeast Isolated from Makgeolli by Intense Pulsed Light Treatment in Batch System

회분식 고강도 광원 처리에 의한 막걸리 효모의 살균

  • Kim, Bora (Food Industry Research Institute, JeonJu University) ;
  • Kim, Ae-Jin (Sempio Foods Company) ;
  • Hong, Hee-Jung (Department of Traditional Food Industry, Graduate School, JeonJu Univesity) ;
  • Shin, Jung-Kue (Food Industry Research Institute, JeonJu University)
  • 김보라 (전주대학교 식품산업연구소) ;
  • 김애진 (샘표식품(주)) ;
  • 홍희정 (전주대학교 전통식품산업학과) ;
  • 신정규 (전주대학교 식품산업연구소)
  • Published : 2013.05.31

Abstract

Intense pulsed light (IPL) treatment is one of the emerging non-thermal techniques being investigated as an alternative to conventional thermal treatment because it has been proven to be effective for microbial inactivation in air, water, and foods. The aim of this study was to evaluate the possibility of using IPL treatment for the effective inactivation of isolated yeast in makgeolli. The key parameters of intense pulsed light are light intensity (input voltage), treatment time, frequency of pulse, and depth of sample. The results show that there is a significant reduction of population along with an increase of light intensity and IPL treatment duration. The highest level of inactivation achieved in this study was approximately a 7 log CFU/mL reduction. In addition, the inactivation rates of yeast cells decrease with increasing initial cell population and depth of samples. But pulse frequency did not affect the inactivation of yeast. Temperature was not changed during IPL treatment.

UV 파장이 차단된 고강도 광원을 활용한 광펄스 시스템을 이용하여 막걸리로부터 분리한 효모의 살균 효과에 대하여 연구하였다. 광펄스 처리의 주요 변수인 빛의 세기와 처리시간 그리고 frequency에 따른 효모의 사멸 효과를 살펴본 결과 광원의 빛의 세기(전압의 세기)가 높아질수록 그리고 처리시간이 길어질수록 높은 사멸율을 나타내어 1000V, 50 sec 처리 후 모든 균(약 7 log CFU/mL) 이 사멸하였으며, 처리시간에 따라 직선적으로 사멸하는 경향을 보였다. 일정한 빛의 세기와 처리시간에서는 frequency가 증가할수록 사멸 효과가 증가하였지만 실제 처리시간(처리시간${\times}$펄스수)이 같으면 frequency에 상관없이 같은 사멸효과를 보여 frequency에 따른 사멸율의 영향은 없었다. 시료내에 초기 균수 농도가 높을수록 투명도의 감소에 의해 광원의 투과력이 떨어져 사멸효과는 감소하였으며, 시료의 깊이가 증가할수록 사멸효과는 감소하여 시료의 깊이가 5 mm이상일 경우 사멸효과가 급격히 떨어졌다. 광펄스 처리 중 시료의 온도는 변화가 없었다. 이상의 결과로 미루어 볼 때 광펄스 처리가 실제 공정에 적용될 경우 온도의 변화없이 시료내의 미생물을 사멸하는데 효과는 있으나 이를 위해서는 시료의 탁도와 초기균수 그리고 깊이를 고려하여 설계되어야 할 것으로 보인다.

Keywords

References

  1. Bolton JR, Linden KG. 2003. Sterilization of methods for fluence( UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129: 209-215. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
  2. Cheigh CI, Park MH, Chung MS, Shin JK, Park YS. 2012. Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 25: 654-659. https://doi.org/10.1016/j.foodcont.2011.11.032
  3. Chen Y, Lu A, Li A, Yip HY, An T, Li G, Jin P, Wong PK. 2011. Photocatalytic inactivation of Escherichia coli by natural sphalerite suspension: Effect of spectrum, wavelength and intensity of visible light. Cheomsphere 84: 1276-1281. https://doi.org/10.1016/j.chemosphere.2011.05.055
  4. Cho HY, Shin JK, Pyun YR. 1996. Nonthermal processing technology using high voltage pulsed electric fields. Food Sci. Ind. 29: 28-35.
  5. Chun HH, Kim JY, Lee BD, Yu DJ, Song KB, 2010. Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control 21: 276-280. https://doi.org/10.1016/j.foodcont.2009.06.006
  6. Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyerr K, Painchaud F. 1989. Methods for preservation of foodstuffes. US patent 4,871,559.
  7. Gomez-Lopez VM, Devlieghere F, Bonduelle V, Devevere J. 2005. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Intl. J. Food Microbiol. 103: 79-80. https://doi.org/10.1016/j.ijfoodmicro.2004.11.028
  8. Hiramoto T. 1984. Method of sterilization, US patent 4,464,336.
  9. Jeong JW, Park KJ, Kim MH, Kim DS. 2006. Changes in quality of spray dried and freeze-dried Takju powder during storage. Korean Soc. Food Sci. Technol. 28: 513-520.
  10. Keyser M, Muller LA, Cilliers FP, Nel W, Gouws PA. 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Tech. 9: 348-354. https://doi.org/10.1016/j.ifset.2007.09.002
  11. Kim BC, Kim BR, Kim AJ, Shin JK. 2012. A study of quality and shelf-life of korean tradtional turbid rice wine (Takju) by batch intense pulsed light. Food Eng. Prog. 16: 58-63.
  12. Kim CJ, Oh MJ, Kim SY. 1975. Studies on the induction of available mutants of Takju yeast by UV light irradiation. J. Korean Agri. Chem. 18: 10-15.
  13. Krishnamurthy K, Demirci A, Inrudayaraj J. 2004. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J. Food Prot. 67: 1027-1030.
  14. Lee CH, Tae WT, Kim GM, Lee HD. 1991. Studies on the pasteurization conditions of Takju. Korean Soc. Food Sci. Technol. 23: 44-51.
  15. Lee JW, Jung JJ, Choi EJ, Kang ST. 2009. Changes in quality of UV sterilization Takju during storage by honeycomb type-UV sterilizer. Korean Soc. Food Sci. Technol. 41: 652-656.
  16. Lee JW, Park JW. 2010a. Quality characteristics of Makgeolli during freezing storage. Food Eng. Prog. 14: 328-334.
  17. Lee JW, Park JW. 2010b. Quality characteristics of Makgeolli during separation storage methods. Food Eng. Prog. 14: 346-353.
  18. Luksiene Z, Gudelis V, Buchovec J, Raudeliuniene J. 2007. Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella typhimurium viability in vitro. J. Food Microbiol. 103: 1545-1552.
  19. Marquenie D, Lammertyn J, Geeraerd AH, Van Impe JF, Nicolai BM, Michiels CW. 2002. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. Intl. J. Food Microbiol. 74: 27-35. https://doi.org/10.1016/S0168-1605(01)00719-X
  20. MIFAFF. Mascom Release Report, MIFAFF, 2011. 07. 05.
  21. Otaki M, Okuda A, Tajima K, Iwasaki T, Kinoshita S, Ohgaki S. 2003. Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps. Water Sci. Technol. 47: 185-190.
  22. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, Mcllvaney L, Farish O. 1999. Pulsed light inactivation of food-related microorganisms. Appl. Eviron. Microbiol. 65: 1312-1315.
  23. Schenk M, Raffellini S, Guerrero S, Blaco GA, Alzamora SM. 2011. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light: Study of cell injury by flow cytometry. LWT-Food Sci. Tech. 44: 191-198. https://doi.org/10.1016/j.lwt.2010.05.012
  24. Shin JK, Chung MS, Park YS. 2010a. High intensity pulsed light treatment for preservation and shelf-life extension of seafoods. Ministry for FAFF Research Report, JeonJu University.
  25. Shin JK, Kim BR, Kim AJ. 2010b. Nonthermal food processing technology using electric power. Food Sci. Ind. 43: 21-34.
  26. Slieman TA, Nicholson WL. 2000. Artificial and solar UV radiation induces strand breaks and cyclobutane dimer in Bacillus subtilits spore DAN. Appl. Environ. Microbiol. 62: 1977-1983.
  27. Wang T, MacGregor SJ, Anderson JG, Woolsey GA. 2005. Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Res. 39: 2921-2925. https://doi.org/10.1016/j.watres.2005.04.067
  28. Wekhof A. 2000. Disinfection with flash lamp. PDA J. Pharm. Sci. Tech. 54: 264-276.
  29. Wekhof A, Trompeter FJ, Franken O. 2001. Pulse UV disintegration (PUVD): A new sterilization mechnism for packaging and borad medical-hospital applications. The 1st International conference on ultraviolet technologies, Washington D.C., USA.