DOI QR코드

DOI QR Code

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Received : 2013.03.18
  • Accepted : 2013.04.29
  • Published : 2013.06.25

Abstract

Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.

Keywords

References

  1. Brue M. D., A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.
  2. Cameron R. H., Storvick D. A., Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.
  3. Chang K. S., Cho D. H., Kim B. S., Song T. S., Yoo I., Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14(3) (2003), 217-235. https://doi.org/10.1080/1065246031000081652
  4. Chang S. J., Skoug D., The effect of drift on conditional Fourier-Feynman transforms and conditional convolution products, Int. J. Appl. Math. 2(4) (2000), 505-527.
  5. Cho D. H., A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. 2012, submitted.
  6. Cho D. H., Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23(6) (2012), 405-420. https://doi.org/10.1080/10652469.2011.596482
  7. Cho D. H., A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59(2) (2009), 431-452. https://doi.org/10.1007/s10587-009-0030-6
  8. Cho D. H., Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an $L_p$ theory, J. Korean Math. Soc. 41(2) (2004), 265-294. https://doi.org/10.4134/JKMS.2004.41.2.265
  9. Cho D. H., Kim B. J., Yoo I., Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), 421-438. https://doi.org/10.1016/j.jmaa.2009.05.023
  10. Folland G. B., Real analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1984.
  11. Huffman T., Park C., Skoug D., Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347(2) (1995), 661-673. https://doi.org/10.1090/S0002-9947-1995-1242088-7
  12. Im M. K., Ryu K. S., An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39(5) (2002), 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
  13. Johnson G. W., Skoug D. L., The Cameron-Storvick function space integral: an L($L_p,\;L_p'$)-theory, Nagoya Math. J. 60 (1976), 93-137. https://doi.org/10.1017/S0027763000017189
  14. Kim M. J., Conditional Fourier-Feynman transform and convolution product on a function space, Int. J. Math. Anal. 3(10) (2009), 457-471.
  15. Laha R. G., Rohatgi V. K., Probability theory, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
  16. Ryu K. S., Im M. K., A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354(12) (2002), 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  17. Ryu K. S., Im M. K., Choi K. S., Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15(3) (2009), 319-337.
  18. Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.
  19. Yeh J., Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973.

Cited by

  1. CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE vol.50, pp.5, 2013, https://doi.org/10.4134/JKMS.2013.50.5.1105