DOI QR코드

DOI QR Code

Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model

쿼드트리 격자기반 모형의 홍수범람해석 적용성 평가

  • Lee, Dae Eop (IWRRI., Chungnam National Univ.) ;
  • An, Hyun Uk (Numerical Program Team, Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences) ;
  • Lee, Gi Ha (Dept. of Constructional Disaster Prevention Eng., Kyungpook National Univ.) ;
  • Jung, Kwan Sue (Dept. of Civil Engrg., Chungnam National Univ.)
  • 이대업 (충남대학교 국제수자원연구소) ;
  • 안현욱 (국가수리과학연구소 계산수리과학연구부 수치프로그램연구팀) ;
  • 이기하 (경북대학교 과학기술대학 건설방재공학부) ;
  • 정관수 (충남대학교 공과대학 토목공학과)
  • Received : 2013.02.13
  • Accepted : 2013.03.29
  • Published : 2013.06.30

Abstract

Lately, intensity and frequency of natural disasters such as flood are increasing because of abnormal climate. Casualties and property damages due to large-scale floods such as Typhoon Rusa in 2002 and Typhoon Maemi in 2003 rapidly increased, and these show the limits of the existing disaster prevention measures and flood forecasting systems regarding irregular climate changes. In order to efficiently respond to extraordinary flood, it is important to provide effective countermeasures through an inundation model that can accurately simulate flood inundation patterns. However, the existing flood inundation analysis model has problems such as excessive take of analysis time and accuracy of the analyzed results. Therefore, this study conducted a flood inundation analysis by using the Gerris flow solver that uses quadtree grid, targeting the Baeksan Levee in the Nakdong River Basin that collapsed because of a concentrated torrential rainfall in August, 2002. Through comparisons with the FLUMEN model that uses unstructured grid among the existing flood inundation models and the actual flooded areas, it determined the applicability and efficiency of the quadtree grid-based flood inundation model of the Gerris flow solver.

최근 이상기후로 인해 홍수 등 자연재해의 강도 및 빈도가 증가하고 있다. 2002년 태풍 루사, 2003년 태풍 매미 등 집중호우에 따른 대규모 홍수로 인해 인명 및 재산피해의 급격한 증가가 나타났으며, 이는 불규칙한 기상변화에 대한 기존의 방재대책과 홍수예측시스템의 한계를 보여주고 있다. 이러한 이상 홍수에 효율적으로 대응하기 위해서는 홍수범람 양상을 정확하게 모의할 수 있는 범람모형을 통해 효과적인 대응방안 마련하는 것이 중요하지만 기존의 홍수범람해석모형은 해석시간의 과다소요 및 해석결과의 정확성 등의 문제가 존재한다. 따라서 본 연구에서는 2002년 8월 집중호우로 인해 붕괴된 낙동강 유역의 백산제를 대상으로 쿼드트리격자를 사용하는 Gerris모형을 이용하여 홍수범람해석을 수행하였으며, 기존의 홍수범람모형 중 비구조격자를 사용하는 FLUMEN모형 및 실제 범람지역과의 비교를 통해 쿼드트리 격자기반 홍수범람모형의 적용성 및 효율성을 판단하였다.

Keywords

References

  1. An, H., and Yu, S. (2011). "Numerical simulation of urban flash flood experiments using adaptive mesh refinement and cut cell method." Journal of Korea Water Resources Association, Vol. 44, No. 228, pp. 511-522. https://doi.org/10.3741/JKWRA.2011.44.7.511
  2. An, H., and Yu, S. (2012). "Well-balanced shallow water flow simulation on quadtree cut cell grids." Advances in Water Resources, Vol. 39, pp. 60-70. https://doi.org/10.1016/j.advwatres.2012.01.003
  3. Audusse, E., Bouchut, F., Bristeau, M., Klein, R., and Perthame, B. (2004). "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows." SIAM Journal on Scientific Computing, Vol. 25, pp. 2050-2065. https://doi.org/10.1137/S1064827503431090
  4. Beffa, C. (2004). FLUMEN user manual. Fluvial.ch.
  5. Billett, S.J., and Toro, E.F. (1997). "On waf-type schemes for multidimensional hyperbolic conservation laws." Journal of Computational Physics, Vol. 130, pp. 1-24. https://doi.org/10.1006/jcph.1996.5470
  6. Fraccarollo, L., and Toro, E.F. (1995). "Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems." Journal of Hydraulic Research, Vol. 33, pp. 843-864. https://doi.org/10.1080/00221689509498555
  7. Han, K.H. (2009). "Flood defense project for the next generation considering climate change." Journal of The Korean Society of Civil Engineers, Vol. 57, No. 3, pp. 10-11.
  8. Kim, I.H. (2004). Flood inundation analysis due to levee failure in Nakdong-River in 2002. M.S. dissertation, University of Kyungpook.
  9. Kim, J.H., Lee, S.O., Yoon, K.S., and Cho, Y.S. (2008). "Application of a two-dimensional flood inundation model based on quadtree grid." Journal of the Korean Society of Hazard Mitigation, Vol. 8, No. 3, pp. 129-136.
  10. Kim, W.G., Jung, K.S., and Kim, J.H. (2003). "Weighted averaged flux method for computation of shallow water equations." Journal of Korea Water Resources Association, Vol. 36, No. 5, pp. 777-785. https://doi.org/10.3741/JKWRA.2003.36.5.777
  11. Kim, Y.S. (2003). Korea flood disaster characteristics and countermeasures. National Disaster Management Institute.
  12. Leveque, R.J. (2002). Finite volume methods for hyperbolic problems, Cambridge University Press.
  13. Liang, Q., Borthwick, A.G.L., and Stelling, G. (2004). "Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids." International Journal for Numerical Methods in Fluids, Vol. 46, pp. 127-162. https://doi.org/10.1002/fld.748
  14. Lin, T.H., Park, K.Y., and Cho, Y.S. (2004). "Inundation of tsunamis based on quadtree grid system." Journal of Korean Society of Hazard Mitigation, Vol. 4, No. 2, pp. 71-76.
  15. Ministry of Construction. (1991). Fundamental planning report for Nakdong River improvement (supplement).
  16. Ministry of Construction. (1992). Fundamental planning report for Nakdong River improvement (supplement II).
  17. Ministry of Construction. (1993). Fundamental planning report for Nakdong River improvement (supplement III).
  18. Ministry of Construction and Transportation. (2002). Flood forecasting and warning system in Nakdong river.
  19. Ministry of Construction and Transportation. (2007). Development and operation of sluice gate management system.
  20. Ministry of Land, Transport and Maritime Affairs. (2008). Guidelines for creating a flood risk map.
  21. Popinet, S. (2003). "Gerris :A tree-based adaptive solver for the incompressible euler equations in complex geometries." Journal of Computational Physics, Vol. 190, pp. 572-600. https://doi.org/10.1016/S0021-9991(03)00298-5
  22. Popinet, S. (2011). "Quadtree-adaptive tsunami modelling." Ocean Dynamics, Vol. 61, pp. 1261-1285. https://doi.org/10.1007/s10236-011-0438-z
  23. Roe, P.L. (1981). "Approximate riemann solvers, parameter vectors and difference schemes." Journal of Computational Physics, Vol. 43, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  24. Rogers, B., Fujihara, M., and Borthwick, A.G.L. (2001). "Adaptive Q-tree godunov-type scheme for shallow water equations." International Journal for Numerical Methods in Fluids, Vol. 35, pp. 247-280. https://doi.org/10.1002/1097-0363(20010215)35:3<247::AID-FLD89>3.0.CO;2-E
  25. Toro, E.F., Spruce, M., and Speares, W. (1994). "Restoration of the contact surface in the HLL Riemannsolver." Shock Waves, Vol. 4, pp. 25-34. https://doi.org/10.1007/BF01414629
  26. Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: Malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, Vol. 128, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  27. van Leer. (1979). "Towards the ultimate conservative difference scheme. V. Asecond-order sequel to godunov's method." Journal of Computational Physics, Vol. 32, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1

Cited by

  1. Analysis of Flood Inundation Using LiDAR and LISFLOOD Model vol.16, pp.4, 2013, https://doi.org/10.11108/kagis.2013.16.4.001
  2. Analysis of an open source quadtree grid shallow water flow solver for flood simulation vol.384, 2015, https://doi.org/10.1016/j.quaint.2015.01.032