DOI QR코드

DOI QR Code

Effect of Tuna Extracts on Production of Nitric Oxide and Inflammatory Cytokines

참치 추출물의 일산화질소 및 사이토카인 생성에 미치는 영향

  • Kim, Kwang-Hyuk (Department Microbiology, Kosin University College of Medicine) ;
  • Choi, Myoung Won (Department Microbiology, Kosin University College of Medicine) ;
  • Choi, Hyang Mi (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 김광혁 (고신대학교 의과대학 미생물학교실) ;
  • 최명원 (고신대학교 의과대학 미생물학교실) ;
  • 최향미 (한국해양대학교 해양환경생명과학부) ;
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Received : 2012.10.13
  • Accepted : 2013.04.02
  • Published : 2013.06.30

Abstract

The effect of tuna extracts on the production of nitric oxide (NO) and cytokines including interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and interferon-${\gamma}$ (IFN-${\gamma}$), was investigated. All extracts and fractions from tuna significantly reduced NO production induced by lipopolysaccharide (LPS). The acetone+methylene chloride (A+M) extract, n-hexane and 85% aqueous methanol (MeOH) fractions had stronger inhibitory effects among them. The 85% aqueous MeOH fraction at a 10-${\mu}g$ concentration significantly decreased LPS-induced IL-6 and TNF-${\alpha}$ productions at 6 h of incubation. In the case of LPS-induced IFN-${\gamma}$ production, the 85% aqueous MeOH fraction at a 3-${\mu}g$ concentration showed significantly higher levels at 48 h of incubation. These results show that the 85% aqueous MeOH fraction inhibited the production of NO and pro-inflammatory cytokines (IL-6, TNF-${\alpha}$), suggesting that this fraction acts as a potent immunomodulator.

본 연구에서는 참치 추출물 및 분획물들에 의한 NO 생성에 미치는 영향을 살펴보았고 참치 85% aq. MeOH 분획물을 중심으로 면역과정의 생물학적 작용과 대사적 변화를 유도하는 IL-6, IFN-${\gamma}$ 및 TNF-${\alpha}$ 같은 사이토카인의 생성을 측정하여 참치 추출물에 의한 면역 기능 조절에 대하여 검토하였다. 참치 추출물과 각 분획물들은 control보다 낮은 NO 생성량을 나타내었으며, 특히 85% aq. MeOH 및 n-hexane 분획물에 의한 저해효과가 높았다. IL-6와 TNF-${\alpha}$의 경우, 참치 85% aq. MeOH 분획물을 농도별(1, 3 및 $10{\mu}g$)로 처리했을 때 그 중 $10{\mu}g/mL$ 첨가농도에서 6시간 배양 후 가장 낮은 IL-6 및 TNF-${\alpha}$ 생성량을 확인할 수가 있었다(p<0.05). IFN-${\gamma}$의 생성은 참치 85% aq. MeOH 분획물(1, $3{\mu}g/mLg$ 첨가농도)을 LPS와 함께 처리 했을 때 24시간과 48시간 배양 시 생성량이 증가하는 경향이었으나 유의적 차이는 없었다. 따라서 참치 85% aq. MeOH 분획물은 NO 생성과 pro-inflammatory 사이토카인(IL-6와 TNF-${\alpha}$)을 감소시켜 염증반응을 예방할 것으로 기대된다.

Keywords

References

  1. Meydani SN. Dietary modulation of cytokine production and biologic functions. Nutr. Rev. 48: 361-369 (1990)
  2. Miller RA. The cell biology of aging: immunological models. J. Gerontol. 44: B4-B8 (1989)
  3. Hayward AR, Chmura K, Cosyns M. Interferon-gamma is required for innate immunity to Cryptosporidium parvum in mice. J. Infect. Dis. 182: 1001-1004 (2000) https://doi.org/10.1086/315802
  4. Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: production, distribution and metabolic fate in vivo. J. Immunol. 135: 3972-3977 (1985)
  5. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. New Engl. J. Med. 316: 379-385 (1987) https://doi.org/10.1056/NEJM198702123160705
  6. Lowenstein CJ, Snyder SH. Nitric oxide, a novel biologic messenger. Cell 70: 705-707 (1992) https://doi.org/10.1016/0092-8674(92)90301-R
  7. Oshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264 (1994) https://doi.org/10.1016/0027-5107(94)90245-3
  8. Saito H, Saito I, Chang KJ, Tamura Y, Yoshida S. Effect of ingestion of eicosapentaenoic acid ethylester on the scavenger activity for acetylated LDL and the production of platelet-derived growth factor in rat peritoneal macrophages. Adv. Prostag. Thromb. L. 21A: 241-244 (1991)
  9. Zhang J, Sasaki S, Amano K, Kesteloot H. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: an ecological study. Prev. Med. 28: 520-529 (1999) https://doi.org/10.1006/pmed.1998.0472
  10. Takahashi M, Minamoto T, Yamashita N, Yazawa K, Sugimura T, Esumi H. Reduction in formation and growth of 1,2-dimethylhydrazine- induced aberrant crypt foci in rat colon by docosahexaenoic acid. Cancer Res. 53: 2786-2789 (1993)
  11. Wu D, Meydani SN, Meydani M, Hayek MG, Huth P, Nicolosi RJ. Immunologic effects of marine- and plant-derived n-3 polyunsaturated fatty acids in nonhuman primates. Am. J. Clin. Nutr. 63: 273-280 (1996)
  12. Mohammad RM, Varterasian ML, Almatchy VP, Hannoudi GN, Pettit GR, Al-Katib A. Successful treatment of human chronic lymphocytic leukemia xenografts with combination biological agents auristatin PE and bryostatin 1. Clin. Cancer Res. 4: 1337-1343 (1998)
  13. Jang JR, Kim KK, Mun SB, Lim SY. In vitro anticancer and antioxidant effect of solvent extracts from tuna dried at low temperature vacuum. J. Life Sci. 19: 633-638 (2009) https://doi.org/10.5352/JLS.2009.19.5.633
  14. Green LC, Wagner DA, Logowski GJ, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  15. Hwang SA, Dasgupta A, Actor JK. Cytokine production by nonadherent mouse splenocyte cultures to Echinacea extracts. Clin. Chim. Acta 343: 161-166 (2004) https://doi.org/10.1016/j.cccn.2004.01.011
  16. Kim KH, Kim SH, Park KY. Effects of kimchi extracts on production of nitric oxide by activated macrophages, transforming growth factor-betta 1 of tumor cells and interleukin-6 in splenocytes. J. Food Sci. Nutr. 6: 126-132 (2001)
  17. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostag. Leukotr. Ess. 79: 101-108 (2008) https://doi.org/10.1016/j.plefa.2008.09.016
  18. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S. Docosahexaenoic acid prevents lipopolysaccharide- induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem. 105: 296-307 (2008) https://doi.org/10.1111/j.1471-4159.2007.05129.x
  19. Hwang WI, Baik NG, Hwang YK, Lee SD. Antitumor and immunological effects of tuna extract. J. Korean Soc. Food Nutr.. 21: 353-366 (1992)
  20. Park S, Choung SY, Choi YJ. Immune regulating effect of polysaccharide fraction from sea hare (Aplysia kurodai). J. Korean Soc. Food Sci. Nutr. 40: 372-378 (2011) https://doi.org/10.3746/jkfn.2011.40.3.372
  21. Bouwens M, van de Rest O, Dellsscharft N, Bromhaar MG, de Groot LC, Geleijinse JM, Muller M, Afman LA. Fish-oil supplementation induces antinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 90: 415-424 (2009) https://doi.org/10.3945/ajcn.2009.27680
  22. Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor a and interleukin 1$\beta$ production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 63: 116-122 (1996)
  23. Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaemoic acid. J. Nutr. Biochem. 18: 250-258 (2007) https://doi.org/10.1016/j.jnutbio.2006.04.003
  24. LeBlanc CJ, Horohov DW, Bauer JE, Hosgood G, Mauldin GE. Effects of dietary supplementation with fish oil on in vivo production of inflammatory mediators in clinically normal dogs. Am. J. Vet. Res. 69: 486-493 (2008) https://doi.org/10.2460/ajvr.69.4.486

Cited by

  1. Immuno-stimulating Activities of Skipjack Tuna Katsuwonus pelamis Cooking Juice Concentrates on Mouse Macrophages and Spleen Cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0776
  2. Protective Effect of Dried Mackerel Extract on Lipopolysaccharide-induced Inflammation vol.23, pp.9, 2013, https://doi.org/10.5352/JLS.2013.23.9.1140