DOI QR코드

DOI QR Code

Banana Peel: A Green Solution for Metal Removal from Contaminated Waters

  • Arunakumara, Kkiu (Department of Crop Science, Faculty of Agriculture, University of Ruhuna) ;
  • Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2013.03.19
  • Accepted : 2013.06.11
  • Published : 2013.06.30

Abstract

BACKGROUND: Certain crop-based waste materials have been recognized as cost-effective and highly efficient adsorbents for removal and recovery of different kind of heavy metals from aqueous solutions. The ability is strongly attributed to the carboxyl functional group of some pectin substances such as galacturonic acid often found in fruit peels. The present manuscript was aimed at assessing the potential applicability of banana peel for metal removal from contaminated waters. METHODS AND RESULTS: As revealed by laboratory investigations, banana peel contains pectin (10-21%), lignin (6-12%), cellulose (7.6-9.6%), and hemicelluloses (6.4-9.4%). The pectin extraction is reported to have glucose, galactose, arabinose, rhamnose, xylose, and galactouroninc acid. Several studies conducted under different conditions proved that banana peel is capable of adsorbing 5.71, 2.55, 28.00, 6.88, 7.97, and 5.80 mg/g of $Cd^{2+}$, $Co^{2+}$, $Cu^{2+}$, $Ni^{2+}$, $Pb^{2+}$, and $Zn^{2+}$, respectively, from aqueous solutions. Adsorption capacity is, however, dependent upon several factors including solution pH, dose of adsorbent and metal concentration, contact time and shaking speed. CONCLUSION(S): Since the annual world production of banana exceeds 100 million tons, about 40 million tons of banana peel (40% of total weight of the fresh fruit) remains vastly unused. Exploring a sound technology with banana peel would therefore, not only address the much needed sustainable tool for cleaning contaminated waters, but of course bring an additional value to the banana industry worldwide.

Keywords

References

  1. Achak, M., Hafidi, A., Ouazzani, N., Sayadic, S., Mandi, L., 2009. Low cost biosorbent banana peel for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies, J. Hazard. Mater.166, 117-125. https://doi.org/10.1016/j.jhazmat.2008.11.036
  2. Ahalya, N., Kanamadi, R.D., Ramachandra, T.V., 2005. Biosorption of chromium(VI) from aqueous solution by the husk Bengal gram (Cicer arientinum) , Electron. J. Biotechnol. 8, 258-264. https://doi.org/10.2225/vol8-issue3-fulltext-10
  3. Aktas, O., Cecen, F., 2007. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon, J. Hazard. Mater. 141, 769-777. https://doi.org/10.1016/j.jhazmat.2006.07.050
  4. Al-Asheh, S., Banat, F., Al-Omari, R., Duvnjak, Z., 2000. Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere. 41, 659-665. https://doi.org/10.1016/S0045-6535(99)00497-X
  5. Anhwange, B.A., Ugye, T.J., Nyiaatagher, T.D., 2008. Chemical composition of Musa sapientum (banana) peels, Electron. J. Environ. Agric. Food Chem. 8, 437-442.
  6. Anirudhan, T.S., Shibi, I.G., 2007. Preparation of a cation exchanger containing carboxyl groups from banana stalk and its utilization as chelating agent, InfoMusa. 16, 7-11.
  7. Annadurai, G., Juang, R.S., Lee, D.J., 2002. Adsorption of heavy metal from water using banana and orange peels, Water Sci. Technol. 47, 185-190.
  8. Anwar, J., Shafique, U., Zaman, W., Salman, M., Dar, A., Anwar, S., 2010. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana, Bioresour. Technol.101, 1752-1755. https://doi.org/10.1016/j.biortech.2009.10.021
  9. Arshad, M., Zafar, M.N., Younis, S., Nadeem, R., 2008. The use of neem biomass for the biosorption of zinc from aqueous solutions, J. Hazard. Mater. 157, 534-540. https://doi.org/10.1016/j.jhazmat.2008.01.017
  10. Ashraf, M.A., Mahmood, K., Wajid, A., 2011. Study of low cost biosorbent for biosorption of heavy metals. Proceedings of the International Conference on Food Engineering and Biotechnology, IPCBEE vol.9 (2011), pp 60-68, IACSIT Press, Singapoore.
  11. Babarinde, N.A.A., Oyebamiji, B.J., Adebowale, S.R., 2006. Biosorption of lead ions from aqueous solution by maize leaf, Int. J. Phys. Sci. 1, 23-26.
  12. Basha, S., Murthy, Z.V.P., Jha, B., 2008. Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chem. Eng. J. 137, 480-488.
  13. Bulut, Y., Gozubenli, N., Aydin, H., 2007. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater. 144, 300-306. https://doi.org/10.1016/j.jhazmat.2006.10.027
  14. Castro, R.S.D., Caetano, L., Ferreira, G., Padilha, P.M., Saeki, M.J., Zara, L.F., Martines, A.M.U., Castro, G.R., 2011. Banana peel applied to the solid phase extraction of copper and lead from river water: Pre-concentration of metal ions with a fruit waste, Ind. Eng. Chem. Res. 50, 3446-3451. https://doi.org/10.1021/ie101499e
  15. Chiban, M., Zerbet, M., Carja, G., Sinan, F., 2012. Application of low-cost adsorbents for arsenic removal: A review. J. Environ. Chem. Ecotoxicol. 4, 91-102.
  16. Chojnacka, K., 2006. Biosorption of Cr(III) ions by wheat straw and grass: a systematic characterization of new biosorbents, Pol. J. of Environ. Stud. 15, 845-852.
  17. Cossich, E.S., Tavares, C.R.G., Ravagnani, T.M.K., 2002. Biosorption of chromium(III) by Sargassum sp. biomass, Electron. J. Biotechnol. 5, 133-137.
  18. Daifullah, A.A.M., Girgis, B.S., Gad, H.M.H., 2004. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material, Coll. Surf. 235, 1-10. https://doi.org/10.1016/j.colsurfa.2003.12.020
  19. Demirbas, E., Kobya, M., Senturkl, E., Ozkan, T., 2004. Adsorption kinetics for the removal of chromium(VI) from aqueous solution on the activated carbons prepared from agricultural wastes, J. Water SA. 30, 533-539.
  20. Demirbas, E., Dizge, N., Sulak, M.T., Kobya, M., 2009. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chem. Eng. J. 148, 480-487. https://doi.org/10.1016/j.cej.2008.09.027
  21. Emaga, T.H., Robert, C., Ronkart, S.N., Wathelet, B., Paquot, M., 2008. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties, Bioresour. Technol. 99, 4346-4354. https://doi.org/10.1016/j.biortech.2007.08.030
  22. Fiol, N., Villaescusa, I., Martinez, M., 2006. Sorption of Pb(II), Ni(II), Cu(II), and Cd(II) from aqueous solution by olive stone waste, J. Sep. Purif Technol. 50, 132-140. https://doi.org/10.1016/j.seppur.2005.11.016
  23. Gao, H., Liu, Y., Zeng, G., Xu, W., Li, T., Xia, W., 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw, J. Hazard. Mater. 150, 446-452. https://doi.org/10.1016/j.jhazmat.2007.04.126
  24. Garg, U.K., Kaur, M.P., Garg, V.K., Suda, D., 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass, J. Hazard. Mater. 140, 60-68. https://doi.org/10.1016/j.jhazmat.2006.06.056
  25. Garg, V.K., Moirantthem, A., Rakesh, K., Renuka, G., 2004. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: A timber industry waste, Dyes Pigments. 63, 243-250. https://doi.org/10.1016/j.dyepig.2004.03.005
  26. Hanafiah, M.A.K.M., Ngah, W.S.W., Ibrahim, S.C., Zakaria, H., Ilias, W.A.H.W., 2006. Kinetics and thermodynamic study of lead adsorption onto rubber (Hevea brasiliensis) leaf powder, J. Appl. Sci. 6, 2762-2767. https://doi.org/10.3923/jas.2006.2762.2767
  27. Hashim, M.A., Chu, K.H., 2004. Biosorption of cadmium by brown, green, and red seaweeds, Chem. Eng. J. 97, 249-255. https://doi.org/10.1016/S1385-8947(03)00216-X
  28. Horsfall Jr., M., Abia, A.A., Spiff, A.I., 2006. Kinetic studies on the adsorption of $Cd^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste, Bioresour. Technol. 97, 283-291. https://doi.org/10.1016/j.biortech.2005.02.016
  29. Hossain, M.A., Ngo, H.H., Guo, W.S., Nguyen, T.V., 2012. Removal of copper from water by adsorption onto banana peel as bioadsorbent, Int. J. Geomate. 2, 227-234.
  30. Kaewsarn, P., Saikaew, W., Wongcharee, S., 2008. Dried biosorbent derived from banana peel: A potential biosorbent for removal of cadmium ions from aqueous solution, Proceedings of the 18th Thailand Chemical Engineering and Applied Chemistry Conference, October 20-21, 2008, Pattaya, Thailand.
  31. Kamsonlian, S., Suresh, S., Balomajumder, C., Chand, S., 2011a. Biosorption of Cd(II) and As(III) ions from aqueous solution by tea waste biomass, Afr. J. Environ. Sci. Technol. 5, 1-7.
  32. Kamsonlian, S., Suresh, S., Majumder, C.B., Chand, S., 2011b. Characterization of banana and orange peels: Biosorption mechanism, Int. J. Sci. Technol. Manag. 2, 1-7.
  33. Karthikeyan, S., Balasubramanian, R., Iyer, C.S.P., 2007. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions, Bioresour. Technol. 98, 452-455. https://doi.org/10.1016/j.biortech.2006.01.010
  34. King, P., Srivinas, P., Kumar, Y.P, Prasad, V.S.R.K., 2006. Sorption of copper(II) ion from aqueous solution by Tectona grandis l.f. (teak leaves powder) , J. Hazard. Mater. B. 136, 560-566. https://doi.org/10.1016/j.jhazmat.2005.12.032
  35. King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P., Prasad, V.S.R.K., 2007. Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetics studies, J. Hazard. Mater. 152, 324-329.
  36. Krishnani, K.K., Meng, X., Christodoulatos, C., Boddu, V.M., 2008. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk, J. Hazard. Mater. 153, 1222-1234. https://doi.org/10.1016/j.jhazmat.2007.09.113
  37. Kumar, U., Bandyopadhyay, M., 2006. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk, J. Hazad. Mater. 129, 253-259. https://doi.org/10.1016/j.jhazmat.2005.08.038
  38. Lee, S.M., Davis, A.P., 2001. Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge, Water Res. 35, 534-540. https://doi.org/10.1016/S0043-1354(00)00284-0
  39. Leyva-Ramos, R., Bernal-Jacome, L.A., Acosta-Rodriguez, I., 2005. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol. 45, 41-49. https://doi.org/10.1016/j.seppur.2005.02.005
  40. Li, X., Tang, Y., Cao, X., Lu, D., Luo, F., Shao, W., 2008. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt, and nickel, Coll. Surf. A. 317, 512-521. https://doi.org/10.1016/j.colsurfa.2007.11.031
  41. Liu, C., Ngo, H.H., Guo, W., Tung, K.L., 2012. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water, Bioresour. Technol. 119, 349-354. https://doi.org/10.1016/j.biortech.2012.06.004
  42. Malkoc, E., Nuhoglu, Y., 2007. Potential of tea factory waste for chromium (VI) removal from aqueous solutions: Thermodynamic and kinetic studies, Sep. Purif. Technol. 54, 291-298. https://doi.org/10.1016/j.seppur.2006.09.017
  43. Memon, J.R., Memon, S.Q., Bhanger, M.I., Memon, G.Z., El-Turki, A., Allen, G.C., 2008a. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal, Colloids Surf. B. 66, 260-265. https://doi.org/10.1016/j.colsurfb.2008.07.001
  44. Memon, S.Q., Bhanger, M.I., Khuhawar, M.Y., 2005. Preconcentration and separation of Cr(III) and Cr(VI) using saw dust as a sorbent, Anal. Bioanal. Chem. 383, 619-624. https://doi.org/10.1007/s00216-005-3391-1
  45. Memon, S.Q., Bhander, M.I., Memon, J.R., 2008b. Evaluation of banana peel for treatment of arsenic contaminated water, Proceedings of the 1st Technical Meeting of Muslim Water Researchers Cooperation (MUWAREC), December 2008, pp 104-109, Malaysia.
  46. Miralles, N., Martinez, M., Florido, A., Casas, I., Fiol, N., Villaescusa, I., 2008. Grape stalks waste as low cost biosorbents: An alternative for metal removal from aqueous solutions, Solvent Extr. Ion Exc. 26, 261-270. https://doi.org/10.1080/07366290802053660
  47. Mohan, D., Pittman, C.U., Bricka, M., Smith, F., Yancey, B., Muhammad, J., Steele, P.H., Alexandre-Franco, M.F., Gomez-Serrano, V., Gong, H., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci. 310, 57-73. https://doi.org/10.1016/j.jcis.2007.01.020
  48. Mohapatra, D., Mishra, S., Sutar, N., 2010. Banana and its by-product utilization; an overview, J. Sci. Ind. Res. 69, 323-329.
  49. Montanher, S.F., Oliveira, E.A. Rollenberg, M.C., 2005. Removal of metal ions from aqueous solutions by sorption onto rice bran, J. Hazard. Mater. B. 117, 207-211. https://doi.org/10.1016/j.jhazmat.2004.09.015
  50. Nasernejad, B., Zalah, T.E., Pou, B.B., Bygi, M.E., Zamani, A., 2005. Comparison for biosorption modeling of heavy metals [Cr(III), Cu(II), Zn(II)] adsorption from wastewater by carrot residues, Process Biochem. 40, 1319-1322. https://doi.org/10.1016/j.procbio.2004.06.010
  51. Noeline, B.F., Manohar, D.M., Anirudhan, T.S., 2005. Kinetic and equilibrium modeling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor, Sep. Purif. Technol. 45, 131-140. https://doi.org/10.1016/j.seppur.2005.03.004
  52. Opeolu, B.O., Fatoki, O.S., 2012. Dynamics of zinc sorption from aqueous matrices using plantain (Musa sp.) peel biomass, Afr. J. Biotechnol. 11, 13194-13201.
  53. Ozer, A., O zer, D., O zer, A., 2004. The adsorption of copper(II) ions onto dehydrated wheat bran (DWB): determination of equilibrium and thermodynamic parameters, Process Biochem. 39, 2183-2191. https://doi.org/10.1016/j.procbio.2003.11.008
  54. Ozer, A., Pirincci, H.B., 2006. The adsorption of Cd(II) ions on sulfuric acid-treated wheat bran, J. Hazard. Mater. B 137, 849-855. https://doi.org/10.1016/j.jhazmat.2006.03.009
  55. Pagnanelli, F., Mainelli, S., Veglio, F., Toro, L., 2003. Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modeling, Chem. Eng. Sci. 58, 4709-4717. https://doi.org/10.1016/j.ces.2003.08.001
  56. Park, D., Yun, Y.S., Park, J.M., 2010. The past, present, and future trends of biosorption, J. Biotechnol. Bioprocess Eng. 15, 86-102. https://doi.org/10.1007/s12257-009-0199-4
  57. Pehlivan, E., Altun, T., Parlayici, S., 2009. Utilization of barley straws as biosorbents for $Cu^{2+}$ and $Pb^{2+}$ ions, J. Hazard. Mater. 164, 982-986. https://doi.org/10.1016/j.jhazmat.2008.08.115
  58. Prasad, A.G.D., Abdulsalam, M.A., 2009. Biosorption of Fe(II) from aqueous solution using tamarind bark and potato peel waste: equilibrium and kinetic studies, J. App. Sc. In Environ. San. 4, 273-282.
  59. Qi, B.C., Aldrich, C., 2008. Biosorption of heavy metals from aqueous solutions with tobacco dust, Bioresour. Technol. 99, 5595-5601. https://doi.org/10.1016/j.biortech.2007.10.042
  60. Reddad, Z., Gerente, C., Andres, Y., Le Cloirec, P., 2002a. Modeling of single and competitive metal adsorption onto a natural polysaccharide, Environ. Sci. Technol. 36, 2242-2248. https://doi.org/10.1021/es010237a
  61. Reddad, Z., Gerente, C., Andres, Y., Ralet, M.C., Thibault, J.F., Cloirec, P.L., 2002b. Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp, Carbohydr. Polym. 49, 23-31. https://doi.org/10.1016/S0144-8617(01)00301-0
  62. Robinson, T., Chandran, B., Nigam, P., 2002. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Res. 36, 2824-2830. https://doi.org/10.1016/S0043-1354(01)00521-8
  63. Sadon, F.N., Ibrahem, A.S., Ismail, K.N., 2012. An overview of rice husk applications and modification techniques in wastewater treatment, J. Purity, Utility React. Environ. 1, 308-334.
  64. Saeed, A., Akhter, M.W., Iqbal, M., 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Sep. Purif. Technol. 45, 25-31. https://doi.org/10.1016/j.seppur.2005.02.004
  65. Sawalha, M.F., Gardea-Torresdey, J.L., Parsons, J.G., Saupe, G., Peralta-Vide, J.R., 2005. Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP-OES, Microchem. J. 81, 122-132. https://doi.org/10.1016/j.microc.2005.01.008
  66. Shafaghat, A., Salimi, F., Valiei, M., Salehzadeh, J., Shafaghat, M., 2012. Removal of heavy metals ($Pb^{2+}$, $Cu^{2+}$, and $Cr^{3+}$) from aqueous solutions using five plants materials, Afr. J. Biotechnol. 11, 852-855.
  67. Sheng, P.X., Ting, Y., Chen, J.P., Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci. 275, 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
  68. Shukla, S.R., Pai, R.S., 2005a. Adsorption of Cu(II), Ni(II), and Zn(II) on dye loaded groundnut shells and sawdust, Sep. Purif. Technol. 43, 1-8. https://doi.org/10.1016/j.seppur.2004.09.003
  69. Shukla, S.R., Pai, R.S., 2005b. Adsorption of Cu(II), Ni(II), and Zn(II) on modified jute fibres, Bioresour. Technol. 96, 1430-1438. https://doi.org/10.1016/j.biortech.2004.12.010
  70. Srivastava, V.C., Mall, I.D., Mishra, I.M., 2006. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto baggase fly ash, J. Chem. Eng.117, 79-91. https://doi.org/10.1016/j.cej.2005.11.021
  71. Sulak, M.T., Demirbas, E., Kobya, M., 2006. Removal of Astrazon yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresour. Technol. 98, 2590-2598.
  72. UNCTAD., 2012. INFOCOMM COMMODITY PROFILE BANANA. http://www.unctad.info/en/Infocomm/AACPProducts/ COMMODITY-PROFILE---Banana/. Assessed on 12/01/2013.
  73. Verma, A., Chakraborty, S., Basu, J.K., 2006. Adsorption study of hexavalent chromium using tamarind hull-based adsorbents, Sep. Purif. Technol. 50, 336-341. https://doi.org/10.1016/j.seppur.2005.12.007
  74. Villaescusa, I., Fiol, N., Marti'nez, M., Miralles, N., Pocj, J., Serarols, J., 2004. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes, Water Res. 38, 992-1002. https://doi.org/10.1016/j.watres.2003.10.040
  75. Volesky, B., 2003. Sorption and Biosorption, Montreal, Canada, BV Sorbex.
  76. Wang, X.S., Qin, Y., 2005. Equilibrium sorption isotherms of $Cu^{2+}$ on rice bran, Process Biochem. 40, 677-680. https://doi.org/10.1016/j.procbio.2004.01.043
  77. Xiaomin, L., Yanru, T., Zhexian, X., Yinghui, L., Fang, L., 2007. Study on the preparation of orange peel cellulose adsorbents and biosorption of $Cd^{2+}$ from aqueous solution, Sep. Purif. Technol. 55, 69-75. https://doi.org/10.1016/j.seppur.2006.10.025
  78. Zafar, M. N., Nadeemb, R., Hanif, M.A., 2007. Biosorption of nickel from protonated rice bran, J. Hazard. Mater. 143, 478-485. https://doi.org/10.1016/j.jhazmat.2006.09.055
  79. Zhou, M., Liu, Y., Zeng, G., Li, X., Xu, W., Fan, T., 2007. Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass, World J. Microbiol. Biotechnol. 23, 43-48. https://doi.org/10.1007/s11274-006-9191-8

Cited by

  1. A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water vol.6, pp.51, 2016, https://doi.org/10.1039/C6RA07460J
  2. Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.220
  3. Mobilization of Heavy Metals in Contaminated Soils induced by Bioaugmentation of Shewanella xiamenensis HM14 vol.47, pp.4, 2014, https://doi.org/10.7745/KJSSF.2014.47.4.290
  4. Removal of Iron and Manganese in Groundwater using Natural Biosorbent vol.140, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/140/1/012046