DOI QR코드

DOI QR Code

Construction of Amylolytic Industrial Strains of Saccharomyces cerevisiae for Improved Ethanol Production from Raw Starch

생전분으로부터 에탄올 생산이 증진된 전분 분해성 산업용 Saccharomyces cerevisiae의 개발

  • Im, Young-Kum (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Park, Jin-Yeong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Lee, Ja-Yeon (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Choi, Seung-Hyun (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Chin, Jong-Eon (Department of Cosmetology, Dongkang College) ;
  • Ko, Hyun-Mi (Department of Microbiology, College of Medicine, Seonam University) ;
  • Kim, Il-Chul (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Bai, Suk (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • 임영금 (전남대학교 자연과학대학 생물학과) ;
  • 박진영 (전남대학교 자연과학대학 생물학과) ;
  • 이자연 (전남대학교 자연과학대학 생물학과) ;
  • 최승현 (전남대학교 자연과학대학 생물학과) ;
  • 진종언 (동강대학 뷰티미용과) ;
  • 고현미 (서남대학교 의과대학 미생물학교실) ;
  • 김일철 (전남대학교 자연과학대학 생물학과) ;
  • 배석 (전남대학교 자연과학대학 생물학과)
  • Received : 2013.06.03
  • Accepted : 2013.06.21
  • Published : 2013.06.30

Abstract

To contruct amylolytic industrial strains of Saccharomyces cerevisiae which produce ethanol efficiently from raw starch, the Bacillus amyloliquefaciens ${\alpha}$-amylase genes (Amy) or Aspergillus awamori glucoamylase genes (GA1) was separately introduced into the ribosomal DNA loci in the chromosomes of the raw starch fermenting-parental strain (ATCC 9763/$YIp{\delta}AGSA{\delta}$), using double 18S rDNA-integration system. Ethanol production after 3 days of fermentation by the strain that produced ethanol most efficiently from raw starch (ATCC 9763/$YIp{\delta}AGSA{\delta}$/YIpAG2rD) among the transformant strains was 1.5-times higher than that by the parental strain. This new strain generated 9.2% (v/v) ethanol (72 g/L) from 20% (w/v) raw corn starch and consumed 75% of the raw starch content during the same period.

생전분으로부터 에탄올을 효율적으로 생산하는 전분 분해성 산업용 Saccharomyces cerevisiae를 제조하기 위해 생전분을 발효하는 모균주(ATCC 9763/$YIp{\delta}AGSA{\delta}$)의 염색체내 ribosomal DNA loci에 double 18S rDNA-integration 시스템을 이용하여 Bacillus amyloliquefaciens ${\alpha}$-amylase 유전자(Amy) 혹은 Aspergillus awamori glucoamylase 유전자(GA1)를 다중도입시켰다. 얻어진 형질전환 균주들 중 생전분으로부터 가장 효율적으로 에탄올을 생산하는 균주(ATCC 9763/$YIp{\delta}AGSA{\delta}$/YIpAG2rD)의 발효 3일째 에탄올 생산은 모균주에 비해 1.5배 높았다. 이 새로운 균주는 생옥수수 전분이 20% (w/v) 함유된 배지에서 3일간 발효를 통해 에탄올 9.2% (v/v) (72 g/L)를 생산하였고, 생전분 함유량의 75%를 소비하였다.

Keywords

References

  1. Choi, E.Y., Park, J.N., Kim, H.O., Shin, D.J., Im, S.Y., Lee, H.B., Chun, S.B., and Bai, S. 2002. Construction of an industrial polyploid strain of Saccharomyces cerevisiae containing Saprolegnia ferax $\beta$ -amylase gene and secreting $\beta$-amylase. Biotechnol. Lett. 24, 1785-1790. https://doi.org/10.1023/A:1020613306127
  2. Eksteen, J.M., van Renseburg, P., Cordero, Otero R.R., and Pretorius, I.S. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84, 639-646. https://doi.org/10.1002/bit.10797
  3. Gangadharan, D., Ramachandran, P., Paramasamy, G., Pandey, A., and Nampoothiri, K.M. 2010. Molecular cloning, overexpression and characterization of the raw-starch-digesting $\alpha$-amylase of Bacillus amyloliquefaciens. Biologia. 65, 392-398. https://doi.org/10.2478/s11756-010-0042-6
  4. Ghang, D.M., Yu, L., Lim, M.H., Ko, H.M., Im, S.Y., Lee, H.B., and Bai, S. 2007. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and $\alpha$ -amylase genes from Debaryomyces occidentalis. Biotechnol. Lett. 29, 1203-1208. https://doi.org/10.1007/s10529-007-9371-0
  5. Gietz, D., St. Jean, A., Woods, R., and Schiestl, R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425. https://doi.org/10.1093/nar/20.6.1425
  6. Kim, H.R., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2011. Raw starch fermentation to ethanol by an industrial distiller's strain of Saccharomyces cerevisiae expressing glucoamylase and $\alpha$-amylase genes. Biotechnol. Lett. 33, 1643-1648. https://doi.org/10.1007/s10529-011-0613-9
  7. Kim, J.H., Kim, H.R., Lim, M.H., Ko, H.M., Chin, J.E., Lee, H.B., Kim, I.C., and Bai, S. 2010. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, $\alpha$-amylase and debranching enzyme. Biotechnol. Lett. 32, 713-719. https://doi.org/10.1007/s10529-010-0212-1
  8. Ma, Y., Lin, L.L., Chien, H.R., and Hsu, W.H. 2000. Effcient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31, 55-59. https://doi.org/10.1042/BA19990080
  9. Nieto, A., Prieto, J.A., and Sanz, P. 1999. Stable high-copy number integration of Aspergillus orizae $\alpha$-amylase cDNA in an industrial baker's yeast strain. Biotechnol. Prog. 15, 459-466. https://doi.org/10.1021/bp9900256
  10. Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY, USA.
  11. Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., and Kondo, A. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and $\alpha$ -amylase. Appl. Environ. Microbiol. 70, 5037-5040. https://doi.org/10.1128/AEM.70.8.5037-5040.2004
  12. Southgate, V.J., Steyn, A.J.C., Pretorius, I.S., and van Vuuren, H.J.J. 1993. Expression and secretion of Bacillus amyloliquefaciens $\alpha$-amylase by yeast pheromone $\alpha$-factor promoter and leader sequence in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59, 1253-1258.
  13. Sun, H., Zhao, P., Ge, X., Xia, Y., Hao, Z., Liu, J., and Peng, M. 2010. Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160, 988-1003. https://doi.org/10.1007/s12010-009-8579-y
  14. van Zyl, W.H., Bloom, M., and Viktor, M. 2012. Engineering yeasts for raw starch conversion. Appl. Microbiol. Biotechnol. 95, 1377-1388. https://doi.org/10.1007/s00253-012-4248-0
  15. Yamada, R., Bito, Y., Adachi, T., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. 2009. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated $\alpha$-amylase and glucoamylase genes. Enzyme Microb. Technol. 44, 344 -349. https://doi.org/10.1016/j.enzmictec.2009.01.001
  16. Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. 2010. Novel strategy for yeast construction using $\delta$-integration and cell fusion to efficiently produce ethanol from raw starch. Appl. Microbiol. Biotechnol. 85, 1491-1498. https://doi.org/10.1007/s00253-009-2198-y
  17. Yamada, S., Yamada, R., Tanaka, T., Ogino, C., and Kondo, A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and $\alpha$-amylase. Enzyme Microb. Technol. 50, 343-347. https://doi.org/10.1016/j.enzmictec.2012.03.005