DOI QR코드

DOI QR Code

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact

태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향

  • Jeong, Yeong Yun (National Typhoon Center, Korea Meteorological Administration) ;
  • Moon, Il-Ju (Graduate School of Interdisciplinary Program in Marine Meteorology, Jeju National University) ;
  • Kim, Sung-Hun (Graduate School of Interdisciplinary Program in Marine Meteorology, Jeju National University)
  • 정영윤 (기상청 국가태풍센터) ;
  • 문일주 (제주대학교 해양기상학협동과정) ;
  • 김성훈 (제주대학교 해양기상학협동과정)
  • Received : 2013.02.05
  • Accepted : 2013.05.04
  • Published : 2013.06.30

Abstract

Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Keywords

References

  1. 문일주, 심재설, 이동영, 이재학, 민인기, 임관창, 2010: 이어도 종합해양과학기지를 활용한 태풍연구: Part I. 태풍관측의 중요성 및 현황, 대기, 20, 247-260.
  2. 변재영, 김백조, 2006: TRMM TMI 관측과 태풍강도의 관련성. 2006 한국기상학회 가을 학술발표대회 논문집, 116-117.
  3. 이동규, 장동언, 위태권, 1992: 한반도에 접근하는 태풍, 1960-1989 제 1부: 통계와 종관 개요. 대기, 28, 133- 147.
  4. Blumberg, A. F. and H. J. Herring, 1987: Circulation modeling using orthogonal curvilinear coordinates, In J. C. J. Nihouland and B. M. Jamart (eds.), Threedimensional models of marine and estuarine dynamics. Elsevier Scientific Publishing Co., Amsterdam, 55-88.
  5. Blumberg, A. F. and G. L. Meller, 1987: A description of a threedimensional coastal ocean circulation model, In N. Heaps (ed.), Three-dimensional coastal ocean models, American Geophysical union, p.1-16.
  6. Cione J. J., E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Ameri. Meteor. Soc., 131, 1783-1796.
  7. Cornillon P., L. Stramma, and J. F. Price, 1987: Satellite measurements of sea surface cooling during hurricane Gloria. Nature, 326, doi:10.1038/326373a0, 373-375.
  8. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976. https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2
  9. Emanuel, K. A. and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782. https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
  10. Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843-858. https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
  11. Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: parameters and scales. J. Phys. Oceanogr., 14, 59-78. https://doi.org/10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2
  12. Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
  13. Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638-654. https://doi.org/10.1175/2007JCLI1659.1
  14. Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218-224. https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2
  15. Lin, I. I., W. T. Liu, C. C. Wu, G. T. F. Wong, C. Hu, Z. Chen, W. D. Liang, Y. Yang, and K. K. Liu, 2003: New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30 (1718), doi:10.1029/2003GL017141.
  16. Lin, I. I.,C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635-2649. https://doi.org/10.1175/MWR3005.1
  17. Lin, I. I.,C. C. Wu, I. F. Pun, and D. S. KO, 2008: Upperocean thermal structure and the Western North Pacific category 5 typhoon. Part I: Ocean features and the category 5 typhoons' intensification. Mon. Wea. Rev., 136, 3288-3306. https://doi.org/10.1175/2008MWR2277.1
  18. Lin, I. I.,I. F. Pun, and C. C. Wu, 2009: Upper-ocean thermal structure and the Western North Pacific category 5 typhoon. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, doi:10.1175/2009MWR2713.1., 3744-3757.
  19. Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 4, 851-875. https://doi.org/10.1029/RG020i004p00851
  20. Moon, I,-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air-sea momentum exchange: II. Behavior of drag coefficient under tropical cyclones. J. Atoms. Sci., 61(19), 2334-2348. https://doi.org/10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2
  21. Moon, I,-J., and S. J. Kwon, 2012: Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons. Progress in Oceanography, 105, 61- 66. https://doi.org/10.1016/j.pocean.2012.04.008
  22. Oey, L.-Y., T. Ezer, D.-P. Wang, X.-Q. Yin and S.-J. Fan, 2007: Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res., 27, 1249-1263, doi:10.1016/j.csr.2007.01.008.
  23. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
  24. Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys.Oceanogr., 24, 233-260. https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
  25. Shang, S. L., Li, F. Sun, J. Wu, C. Hu, D. Chen, X. Ning, Y. Qiu, C. Zhang, and S. Shang, 2008: Changes of temperature and bio-optical properties in the South China Sea in response to typhoon Lingling, 2001. Geophys. Res. Lett., 35, L10602, doi:10.1029/2008GL033502.
  26. Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20227-20248. https://doi.org/10.1029/92JC01586
  27. Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383. https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
  28. Tseng, Y.-H., S. Jan, D. E. Dietrich, I. I., Lin, Y. T., Chang, and T. Y., Tang , 2010: Modeled oceanic response and sea surface cooling to typhoon Kai-Tak. Terr. Atmos. Ocean. Sci., 21(1), 85-98. https://doi.org/10.3319/TAO.2009.06.08.02(IWNOP)
  29. Wada, A., 2002: The processes of SST cooling by typhoon passage and case study of typhoon Rex with a mixed layer ocean model. Meteorol. Geophys., 52, 31-66. https://doi.org/10.2467/mripapers.52.31
  30. Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005: Hurricane forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi:10.1029/2005GL023716.
  31. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850. https://doi.org/10.1126/science.288.5467.847
  32. Wu, C.-R., Y.-L., Chang, L.-Y., Oey, C.-W. J., Chan, and Y.- C., Hsin, 2008: Air sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett., 35, L12605, doi:10.1029/2008GL033942.

Cited by

  1. Characteristics of Variation of Sea Surface Temperature in the East Sea with the Passage of Typhoons vol.24, pp.12, 2015, https://doi.org/10.5322/JESI.2015.24.12.1657
  2. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions vol.10, pp.11, 2019, https://doi.org/10.3390/atmos10110644